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Abstract: Unmanned aerial vehicles, or UAVs, used in collaborative missions, are commonly
supervised in flight by a master guidance, navigation and control system that must verify that
every flight vehicle is performing the mission as prescribed. Within this scenario, the control
system may be separated from the controlled UAVs by great distances, leading to data loss,
increased transport time delays and reduced control stability margins. In this work this scenario
is reproduced experimentally using a single UAV quadcopter and a remote master control unit
connected by a wireless network. By indoor laboratory flight measurements a considerable time
delay was verified and embedded in the UAV thrust to altitude estimated model. Then, a
long-range prediction horizon control solution, based on the Generalized Minimum Variance
Control in the State-Space, was investigated and its results compared to a benchmark controller.
The predictive controller outperformed the benchmark one with respect to reference tracking
dispersion minimization and control signal chattering reduction in the task of controlling the
altitude of a quadcopter over a wireless network in real flight experiments. This work also
discusses further insights on predictive minimum variance control from the perspective of the
so-called general Bolza optimal control problem in order to remark the differences from most
common model predictive control techniques.

Keywords: Minimum variance control, Kalman filter, Model predictive control, Unmanned
aerial vehicle, Altitude hold autopilot.

1. INTRODUCTION

In this work, it is investigated the experimental applica-
tion of the Generalized Minimum Variance in State-Space
method (GMVSS) to design an altitude hold autopilot for
a quadcopter and the theoretical background of Predictive
Minimum Variance Control is revisited in order to ana-
lyze its optimization aspects from the perspective of the
so-called Bolza optimal control problem (Sagliano, 2018;
Sagliano et al., 2022), which assumes the optimization
problem comprised of: the end of mission cost and the
running or transitory cost.

Within the experimental part of this work, the main
problem is the design of a networked autopilot for a
quadcopter which is connected over a wireless network
in an indoor laboratory environment. This configuration
can be used in collaborative missions with unmanned
aerial vehicles (UAV) when a master guidance, navigation
and control system (GNC) is required to supervise and
command every flight vehicle involved.

This distributed control system counts on embedded sta-
bility and control augmentation systems aboard the UAVs
to allow them to be stable and maneuverable, but the
required maneuvers come from a remote guidance and
navigation system, such as the collaborative missions done
with quadcopters at ETH Zurich Flying Machine Arena
(FMA): inverted pendulum pole throwing and catching
between two quadcopters (Brescianini et al., 2013); cooper-

ative construction with flying machines (Augugliaro et al.,
2014); and rhythmic flight performances with quadcopters
merging controls and arts (Schoellig et al., 2014).

The Flying Machine Arena used a very complex set of
equipment and software that was being architectured and
developed since 2007. Lupashin et al. (2014) presented
some of FMA’s major features, such as how the control and
feedback data flows inside the FMA. They used multicast
User Datagram Protocol (UDP) stream, which means,
“send once to anyone that listens, unreliably but often”
(Lupashin et al., 2014).

User Datagram Protocol is the same communication pro-
tocol we have been using to control drones at the Federal
University of Pará, in the Laboratory of Controls and
Systems (LACOS). It is being used over a TCP/IP wire-
less network that connects the quadcopters to middleware
running inside a PC. And in spite of its unreliability due to
the lack of sync, UDP gives better sampling speeds to work
with the distributed control system. This setup also allows
us to test complex estimation and control algorithms, since
this systems can be embedded in a PC instead of a more
restricted hardware aboard the UAV.

A drawback of this distributed control topology is that it
may experience loss of network packets, which means loss
of sensor and command data. Also, the control transmis-
sion latency, which is the transport time delay of com-
mands over the wireless network plus the time delay of



sensor data to come back to the ground station, is another
disadvantage. At the Flying Machine Arena, for example,
Lupashin et al. (2014) presented experimental results of
this latency compensation by state prediction using a
scheme that assumes there is no noise or uncertainties in
the plant model. The predicted state was considered to
be the current state when the control command arrives
at the quadcopter. In Hofer et al. (2016), a model-based
predictive control scheme was implemented and tested at
FMA, but embedded aboard the quadcopter.

Model Predictive Control (MPC) is one good option to
workaround networked UAV control problems. Thus, we
evaluate such an option by testing a MPC technique that
can optimally deal with the problem of model uncertainties
and noise, along with network latency compensation.

This work intends to assess in flight UAV experiments
with a distributed GNC system using long-range predictive
minimum variance control (PMVC). The vertical thrust
to altitude control-loop is analyzed in order to build an
altitude hold autopilot which minimizes the control signal
chattering due to the presence of noisy measurements.
Beyond this introductory part, this work presents the
following: the GMVSS method is presented; the experi-
mental setup is discussed and the networked quadcopter is
modeled by means of least-squares system identification;
simulations and experimental flight results are presented,
followed by the conclusions.

2. THE GMVSS METHOD

The GMVSS is a Predictive Minimum Variance Control
method based on the following model:

x(k) = Ax(k − 1) +Bu(k − d) + Γw(k − 1), (1)

y(k) = Cx(k) + v(k), (2)

where x(k) is the state vector, u(k) is the input vector,
y(k) is the output vector, w(k) and v(k) are Gaussian
disturbances with respectively σ2

w and σ2
v variances. The

A,B,C,Γ are the system’s matrices of appropriate dimen-
sions, d ≥ 1 is the discrete time delay.

When the stochastic part of the state model shown in (1)
and (2) is known, i.e. Γw(k − 1) and v(k), the GMVSS
method can exploit this to design an optimal stochastic
state predictor to cope with minimum variance control
objectives, such as: increased performance with reduced
sensitivity to noise, uncertainties and delay.

The GMVSS method was first published in 2011 while
aiming to avoid the solution of the Diophantine equations
in the design of long-range minimum variance predictors
(MVP) and it has consequently allowed its use as a
MPC controller (Silveira et al., 2016, 2020). The major
differences from other well-known MPC methods is that it
can use a tricked predictor, by a virtual time delay, and
only the final or steady-state performance is considered in
the optimization.

For a better understanding of such differences, let us
consider the continuous-time optimal control problem,
posed in the so-called generalized Bolza form as follows
(Sagliano, 2018):

min J = Φ [tf ,x(tf )] +

∫ tf

t0

Ψ [t,x(t),u(t)] dt, (3)

subject to the controlled system in which its state, x(t), is
governed by

ẋ(t) = f (t,x,u) , (4)

and to the constraints

gL ≤ g (t,x,u) ≤ gU . (5)

For every t there exists a control solution u(t) that com-
plies with the minimization of the final (e.g., steady-state,
end of mission) performance, Φ[.], and the running cost,
Ψ[.], from the initial time t0 (supposed to be known) to the
final time tf , also guaranteeing that the path constraints
g(.) are kept within the specified lower and upper bounds,
gL and gU , respectively, and similar constraints also hold
for lower and upper bounds for x(t) and u(t).

The general Bolza optimal control problem in (3) is only
covered partially in this work in predictive minimum
variance control, where in the discrete-time form the final
mission time tf is substituted by a virtual discrete time
delay Ny. Then, this optimal control problem is described
as:

min J = E [ϕ(k +Ny)]
2 ≈

[
ϕ̂(k +Ny|k)

]2
(6)

subject to (1) and (2), and the estimated generalized
output, predicted k + Ny steps in the future, but based
on information known from the past and up to time k,
given by:

ϕ̂(k +Ny|k) = ŷ(k +Ny|k)− yr(k) + λu(k), (7)

which is consisted of the predicted output ŷ(k + Ny|k),
based on information known up to instant k; the reference
sequence yr(k); and the λ weighted control effort. Ny is
the final time which tricks the predictor as a virtual delay,
thus can also be considered as the prediction horizon in
MPC and can be used along with λ to tune the control-
loop, where long-range prediction minimize the variance of

ϕ̂(k +Ny|k), and higher λ reduces the control effort.

Observe that (6) is an expected cost, as denoted by the
expectation operator E[.], since the generalized output
ϕ(k + Ny) is stochastic. Also, the predictive minimum
variance control differs from commonly known MPC, for
example the Generalized Predictive Control or Dynamic
Matrix Control, because it lacks the running cost part,
Ψ[.]. Thus, all efforts from PMVC are directed to the final
time or the end of mission.

The MVP in the state-space was shown by Silveira et al.
(2016) to be

x̂(k +Ny|k) = (ANy − FC)x̄(k)

+

Ny∑
i=1

A(Ny−i)Bu(k −Ny + i) + Fy(k), (8)

where the state-space MVP gain is

F = A(Ny−1)L, (9)

in which L is the steady-state optimal gain of the Kalman
filter state estimator for the system (1), given by:

x̄(k + 1) = (A− LC)x̄(k) +Bu(k − d+ 1) + Ly(k).
(10)

L can be solved by iterating the estimator algebraic Riccati
difference equation (Lewis et al., 2008):



S(k + 1) = AS(k)AT (11)

−AS(k)CT
(
CS(k)CT +RKF

)−1
CS(k)AT +QKF .

When k → ∞ the steady-state error covariance matrix S∞
is used to solve L, such that

L = AS∞CT
(
CS∞CT +RKF

)−1
(12)

For the minimum variance case, the Kalman filter weight-
ing matrices QKF and RKF must cope with the stochastic
case which is based on the covariance matrices of w(k)
and v(k), respectively Q and R. The required weighting
matrices are then defined as (Lewis et al., 2008):

QKF = ΓQΓT ,

RKF = R.
(13)

Remark: the generalized minimum variance control for-
mulation is based on ARMAX polynomial models and the
GMVSS algorithm was first developed to cope with an
ARMAX canonical state-space realization. In the ARMAX
approach, the Kalman gain L = Γ (Silveira et al., 2016).
The case shown in this present paper, based on a more
generalized state-space realization, such as (1) and the
Kalman filter weighting matrices shown in (13), the PMVC
approach is adopted as described in Silveira et al. (2020).

The PMVC control law that minimizes (6) is given by

u(k) =
yr(k)−

(
CANy − CFC

)
x̄(k)− CFy(k)∑Ny

i=1 CA(Ny−i)Bq−(Ny−i) + λ
(14)

where q−1 is the backward shift operator.

2.1 System augmentation by integrator addition

For type-0 systems, such as the control problem to be
covered in this paper, in order to achieve guaranteed
asymptotic reference tracking the system in (1) must be
augmented in the following manner:[

y(k + 1)
∆x(k + 1)

]
=

[
I CA
0 A

] [
y(k)
∆x(k)

]
+

[
CB
B

]
∆u(k − d+ 1)

+

[
I CΓ
0 Γ

] [
z(k)
w(k)

]
(15)

ya(k) = y(k) = [I 0]

[
y(k)
∆x(k)

]
(16)

where z(k) = v(k + 1), xa(k) = [y(k) ∆x(k)]
T

is the
augmented state vector, ya(k) is the output of the aug-
mented system and ∆u(k) is the control increment, such
that ∆ = 1− q−1. Then, the incremental control action is

u(k) = u(k − 1) + ∆u(k). (17)

3. DRONE’S THRUST TO ALTITUDE SUBSYSTEM

A picture of the LACOS flying room is shown in Fig.
1, where small quadcopter drones can be safely tested
solely for position hold experiments and where a Microsoft
Kinect depth sensor, fixed to the ceiling, can be used as
a 3-dimensional local positioning system. The UAV in use
in this research is the Parrot’s AR.Drone 2.0 quadcopter.

A detailed description of AR.Drone’s functions can be
found in Mac et al. (2018). For this present work and for
the sake of compactness it is simply stated that the robust

Figure 1. AR.Drone 2.0 flying at LACOS’ LPS.

centralized multivariable linear quadratic Gaussian (LQG)
speed hold autopilot published in Silveira et al. (2018) is
used to stabilize longitudinal and lateral dynamics and
then the vertical thrust to altitude subsystem is assumed
to be decoupled from the horizontal velocities subsystems.

The input u(k) is a vertical thrust command in the range
of [−1, 1] and the output y(k) is the quadcopter’s altitude
measured in meters. Also, the middleware in use to link
the UAV and a desktop PC is the free add-on toolbox AR
Drone Simulink Development-Kit V1.13 made by Sanabria
and Mosterman (2014).

3.1 Altitude subsystem modeling in state-space

Adapting the transfer function based least-squares esti-
mator algorithm to the state-space case, a non-recursive
least squares estimator was used to identify the following
second-order system parameters:[

x1(k)
x2(k)

]
=

[
â11 â12
â21 â22

] [
x1(k − 1)
x2(k − 1)

]
(18)

+

[
b̂11
b̂21

]
u(k − d) +

[
γ̂11 γ̂12
γ̂21 γ̂22

] [
w1(k − 1)
w2(k − 1)

]
y(k) = [ 1 0 ]

[
x1(k)
x2(k)

]
+ v(k) (19)

where x1(k) and x2(k) are respectively the altitude and
vertical velocity.

The parameters vectors can be defined as

θ̂T1 =
[
â11 â12 b̂11 γ̂11 γ̂12

]
θ̂T2 =

[
â21 â22 b̂21 γ̂21 γ̂22

] (20)

and future observations are based on the following vector
of regressors:

ϕT
lq(k) = [ [x(k − 1)]T u(k − d) [w(k − 1)]T ] . (21)

The vector of regressors are organized to form the matrix
of regressors,

Φlq =

 ϕT
lq(k)
...

ϕT
lq(N)


N×5

, (22)

leading to the estimation error covariance matrix,



P =
[(
ΦT

lqΦlq

)−1
]
5×5

. (23)

Considering X1 and X2 the measurements vectors of
altitude and vertical velocity, respectively, the vectors of
parameters can be computed in the following form:[

θ̂1 θ̂2
]
5×2

= PΦlq
T [X1 X2 ]N×2 (24)

It must be remarked in (18) that in order to identify the
state Gaussian process noise Γw(k), as well as the output
process noise v(k), the offline identification procedure must
be made at least twice, in order to compute Γw(k) and
v(k) as the process identification error and estimated
output error, respectively. In the first run of the algorithm
these errors are computed and the model can be refined
afterwards.
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Figure 2. Vertical thrust to altitude model validation.

The thrust to altitude identified system model validation
is shown in Fig. 2. The sampling time of 65 ms was
used and the drone model normalized root mean squared
error, NRMSE, was 87.4%. The experimentally observed
time delay was approximately of 0.4 second. Thus, an
approximated discrete time delay of d = 6 was included
in the model. The estimated vectors of parameters, as in
(20), are as follows:

θ̂T1 = [ 0.9995 0.0119 0.0370 0.0014 0.0012 ]

θ̂T2 = [−0.0080 0.1823 0.5699 0.0214 0.0182 ]

The estimated variances for w1(k) and w2(k) were σ2
w1

=

0.0016 and σ2
w2

= 0.0210, respectively. And, for v(k),

σ2
v = 0.0016.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1 Defined UAV altitude hold requirements

According to Stevens et al. (2016), an altitude hold au-
topilot of a modern passenger aircraft typically hold the
aircraft well within ±60.96 m (200 ft) and provide a
warning signal if the deviation exceeds ±30.48 m (100
ft). In this sense, in order to have UAVs sharing the
airspace in a near future, they must meet these standards.
However, the vertical separation of passenger aircrafts are
established in thousands of feet. For the laboratory scale,

a 1 m separation is being considered. Then, the deviation
requirement was scaled down and the autopilot must hold
the UAV within ±0.2 m.

4.2 Designed control system and simulations

The AR Drone Simulink Development-Kit comes with a
baseline altitude controller, ready to be used, thus assumed
as a benchmark controller since it has established a com-
mon ground for researchers using the same UAV. This
baseline controller is described by Sanabria and Moster-
man (2014) as a Proportional controller, thus henceforth
it is referred as P, while our designed predictive control
system is referred as GMVSS.

Both in simulations and experimental applications with
the real UAV, the sampling time Ts = 65 ms was used,
since it is the default setting defined by the manufacturer.

The prediction horizon (or virtual time delay), Ny = 25,
was selected. Thus, as of a 25 samples time spam using a
Ts = 65 ms, the aimed final time optimization criteria was
1.625 s. However such steady-state optimization require-
ment was detuned by the selection of an increment control
weighting factor λ = 5, which was fine tuned by trial and
error while trying to avoid control signal saturation. These
Ny and λ values were selected by following the guidelines
shown in Silveira et al. (2020). Such trial and error tuning
procedures are quite common among MPC practitioners,
since the increase of Ny and λ generally gives a smooth
closed-loop response.

The implemented control design was based on the aug-
mented model. The steady-state optimal gain of the
Kalman filter was obtained for the following estimated
weighting matrices:

QKF = Γa

 σ2
v 0 0
0 σ2

w1
0

0 0 σ2
w2

ΓT
a ,

RKF = σ2
v .

(25)

where the a index in Γa denotes the augmented matrix.
Then, the computed Kalman gain and MVP gain were as
follows:

L =

[
0.6229
0.0030

0

]
, F =

[
0.6946
0.0030

0

]
. (26)

For Ny = 25 a polynomial of degree 24 was computed for
the denominator of the control law in (14), i.e. R(q−1),
leading to

R(q−1) = r0q
0 + r1q

−1 + · · ·+ r24q
−24. (27)

Because of the great dimension of this polynomial, its
values were omitted.

The main simulation result from the application of the
designed GMVSS is shown in Fig. 3. It is possible to verify
that, from the controlled altitude signals, the GMVSS
and P controllers seem to cope with the requirements,
since they respect the altitude hold limit of ±0.2 m in
the presence of process and measurement noises. It must
be remarked, however, that when it comes to the vertical
thrust control signals, GMVSS is the one exhibiting a more
conservative signal with less chattering.
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Figure 3. Altitude hold autopilot simulation.

Benefits of long-range prediction in predictive minimum
variance control have been recently addressed in Silveira
et al. (2020). The linear power of the signals tend to decay
with the long-range prediction and as a consequence a
more efficient and economic control-loop can be achieved.
This is numerically confirmed by the variances shown in
Table 1.

Table 1. Simulations’ performance indexes.

Ctrl. Type P GMVSS

σ2
∆u(k)

0.00373 0.00009

σ2
[y(k+Ny)−yr(k)]

0.00364 0.00356

σ2
ϕ(k+Ny)

0.09449 0.00454

Between the performance indexes presented in Table 1, one
that is remarkably better is the variance of ∆u(k) that can
be associated to the power transitions required to drive and
hold the system to the desired altitude. At the same time,
the power of the error, associated to σ2

[y(k+Ny)−yr(k)]
, is

similar for both P and GMVSS, confirming the increased
efficiency of predictive minimum variance control, despite
its design complexity. The σ2

ϕ(k+Ny)
index is in fact an

efficiency index, since it associates tracking error and
control effort simultaneously and is directly related to the
performance index that the GMVSS algorithm minimizes.

In Fig. 4 it is shown a zoomed view of the transitory be-
havior in the simulations with P and GMVSS controllers.
It is apparent a small altitude overshoot with GMVSS but
that do not exceed the upper limit and meets the autopi-
lot’s requirements. And the P controller, despite not very
clear in this figure, can not guarantee asymptotic reference
tracking as expected. However, this becomes clear in the
experimental results shown next, since the plant-model-
mismatch is of course true in real flights with the drone.

4.3 Experimental flight results

Real flight results for both P and GMVSS are shown
in Fig. 5. Different altitude reference values were tested
in order to experimentally evaluate the robustness and
asymptotic tracking properties. GMVSS is constantly re-
optimizing for 1.625 s in the future, accounting for delay
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Figure 4. Altitude hold transitory simulation.

and disturbances, whereas P is always 0.39 s late and every
disturbance causes great altitude dispersion.
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Figure 5. Altitude hold autopilot in real flights.
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Figure 6. Altitude hold transitory in real flight.

Fig. 6 shows a zoomed view of the transitory behavior. The
conducted flight tests confirmed what was being expected
from theoretical results, where the GMVSS control-loop is



less sensible to disturbances and consequently holds the
altitude more efficiently. This efficiency is also numerically
confirmed by performance indexes shown in Table 2,
computed based on the registered flight data.

Table 2. Performance indexes of real flights.

Ctrl. Type P GMVSS

σ2
∆u(k)

0.00178 0.00024

σ2
[y(k+Ny)−yr(k)]

0.00876 0.00470

σ2
ϕ(k+Ny)

0.04945 0.00708

5. CONCLUSIONS

The designed GMVSS as a MPC presented efficient re-
sults in the task of controlling the altitude of the drone.
Despite the controlled test environment, in terms of lack
of atmospheric disturbances since flying indoors, the drone
produced sufficient turbulent air flow around itself because
it flies close to the floor and walls, so to generate a complex
experimental system. Within this scenario, the controller
under investigation could avoid altitude dispersion with
significant control signal chattering reduction (cf. Fig. 5).

The complexity of the GMVSS controller in a non-adaptive
case as the one investigated in this paper is similar to any
other industrial controller, despite the increased order of
its filters and systems that follow the adopted virtual delay
Ny. However, when compared to more conventional MPC,
such as Generalized Predictive Control or Dynamic Ma-
trix Control, GMVSS solves the optimal control problem
without the running cost of the so-called general Bolza
problem, leading to a different form of tricked predictor or
virtual MPC, while assuming that the controlled system
has a delay bigger than the real one. In this sense, much
effort is given to the steady-state or the end of mission
optimization. The running cost introduction is still open
for investigation.

The end of mission constraints are generally mandatory
in guidance and control of UAVs, such as terminal flight
conditions as in the landing procedure in which the final
touchdown must be soft and with no further positional
dispersion or the vehicle may crash into the floor. In this
sense, the running cost is eventually considered due to
the receding horizon control embedded in the GMVSS
procedure, so that as time goes by the system is re-
optimized to minimize the end of mission or k + Ny

problem ahead, thus conically converging to the end of
mission requirement, despite, up to now, not assuming any
constraints, which is another open issue.

For a future work, the idea is to extend this results with
focus on tests with impulse noise, tone and complex inter-
ference, such as to simulate parasitic dynamics. Another
open issue is including constraints. However, since GMVSS
and predictive minimum variance control do not consider
the running cost, different from most MPCs, the way to
introduce constraints may not be the same, but may be
feasible to achieve with dynamic programming techniques
and the transcription procedure addressed in Sagliano
(2018) and Sagliano et al. (2022), thus mixing within the
GMVSS method both the end of mission and running cost
requirements in a future work.
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