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Abstract: This article addresses the challenge of identifying linear systems for mathematical
modeling of a quadcopter drone, with the purpose of utilizing them in predictive and stochastic
control algorithms. The approach involves the application of two identification methods, namely
the Ordinary Least Squares for ARX systems and the Extended Least Squares for ARMAX
systems. The findings indicate that the ARMAX models exhibit superior performance indices
and are deemed more appropriate for controller projects.
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1. INTRODUCTION

Control, stabilization, and trajectory tracking of drones
are areas of significant interest in science and technol-
ogy, demonstrated by numerous applications in military
(Springer, 1954), civil defense and disaster prevention
(Daud et al., 2022), agriculture (Mogili and Deepak, 2018),
and other fields . Thus, it is essential to employ various
control techniques, including Model Predictive Control
(MPC), which has demonstrated significant success in the
literature.

To achieve their objectives, effective model-based con-
trollers rely on accurate mathematical descriptions. There-
fore, it is crucial to use robust control algorithms and
appropriate identification methods to ensure that the con-
trolled system’s performance indices are not compromised.
The movement dynamics of a quadcopter make it a com-
plex system, requiring careful design of control algorithms.
To design controllers based on models efficiently, a math-
ematically accurate description that represents the pro-
cess’s dynamics is necessary. Identification can also provide
a better understanding of the system’s dynamics, enabling
the designer to use virtual simulations of various control
algorithms and have a broader view of the problem’s scope
(Patwardhan and Shah, 2002).

Numerous scientific works have been produced worldwide
to develop accurate models that describe the dynamics
of quadcopter drones. In Lopes (2013), two models were

⋆ This work was carried out with the support of CNPq Proc.
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developed and compared for the Parrot AR Drone: a phe-
nomenological model (or white box model) and an Auto
Regressive with Exogenous Inputs (ARX) model, both
created using Ordinary Least Squares (OLS). The study
aimed to represent the drone dynamics appropriately, and
it was concluded that the models achieved were valid for
simulations. Although there are couplings, the system can
be controlled in a decoupled way in the specific case of the
AR Drone.

In Hernandez (2013), the pitch and altitude dynamics
were identified using an Error Prediction Method (EPM)
with different sampling times for each dynamic. The study
proposed some models for simulation of drones. However,
the approach presented in this paper encompasses all
dynamics in a single sampling period to simplify the
treatment of problems related to transport delay, which
can suffer fluctuations due to wireless communication.
Additionally, the Extended Least Squares (ELS) algorithm
was used, which performs stochastic modeling to obtain
better parameterized models than in Lopes (2013).

The main objective of this paper is to explore and imple-
ment identification algorithms for quadcopters to design
controllers, ranging from simple Proportional-Integral-
Derivative (PID) controllers to complex Stochastic Model
Predictive Controllers. This local scientific problem is ad-
dressed in this study, providing tools that can be used
globally by any reader utilizing the models presented here.
Additionally, the techniques demonstrated in this article
allow an analysis of robustness through gain and phase



margins, predictability of dynamics, and disturbance be-
havior.

Moreover, this article serves as an excellent literature
review, where the difference equations are applied in ex-
perimental environments, highlighting the challenges faced
in the control and automation field. The study provides a
realistic approach to the problems faced in practice, which
cannot be entirely addressed through simulations.

2. DRONE QUADCOPTER SYSTEM

This section introduces information about the AR Drone
Quadcopter and the experimental environment of the
tests. Then, in sequence, the approach to identifying the
model is presented.

2.1 Parrot AR Drone

The Parrot AR. Drone 2.0 is an Unmanned Aerial Vehicle
(UAV) that was used in this work. This UAV has four
engines coupled to propellers equally spaced from the
central axis. Its data processing and transmission system
has an ARM Cortex A8 32-bit 1 GHz processor, inertial
navigation sensors – accelerometer, gyrometer, barometer,
ultrasound (for low altitudes) and altimeter (for higher
altitudes) –, cameras 720-pixel HD resolution and commu-
nication via 802.11 IEEE (WiFi™) protocols with a range
of up to 50 meters without obstacles (Parrot, 2014).

In order to conduct the experiments, it is not a require-
ment to integrate controllers into the microprocessor of the
drone. Instead, the algorithms are processed on a personal
computer and only wireless signals are transmitted. The
transmission and reception of signals utilize UDP (User
Datagram Protocol) without the use of handshake, which
is a term associated with Transmission Control Proto-
col (TCP) for signal reception conference. This approach
prioritizes communication speed and is unconcerned with
the potential loss of information, a characteristic of UDP.
Thus, if hosts lose contact, the buffers located within the
drone will function based on the last reference received.
Additionally, the AR drone contains autonomous flight
safety mechanisms that activate in the event of persistent
errors.

The AR Drone version 2.0 facilitates ”real-time” commu-
nication (with apologies for using a non-rigorous term) be-
tween the drone and the processing unit responsible for ex-
ecuting command algorithms. The term ”real-time” refers
to the attempt to achieve immediate signal transmission
and reception from the drone. However, a complete loop of
sending and receiving data occurs within a time interval of
0.065 second, which corresponds to the minimum Sampling
Time Ts that should be utilized for controller design.
This Ts naturally arises from the transport delay of the
WiFi technology utilized in the communication between
the computer and the AR Drone (Sanabria, 2013).

2.2 Quadcopter Drone Dynamics

Fig. 1 depicts the dynamics of the quadcopter, highlighting
the six degrees of freedom (6-DOF) 1 associated with its

1 sideways, forwards, backwards, up and down and rotating around
the 3 XYZ axes.

Fig. 1. Guidance of the AR Drone dynamics following the
NED (North-East-Down) system.

Fig. 2. Devices used for experimental tests.

movement. According to the literature by Stevens et al.
(2016), the Drone’s rotation around the X, Y, and Z axes
corresponds to the Roll, Pitch, and Yaw angles, respec-
tively, which are referred to as Euler Angles. Clockwise ro-
tation of these angles yields positive angular velocities (in
accordance with the right-hand rule, whereby the thumb
points in the direction of the axis and the remaining fingers
indicate the direction of rotation), whereas anti-clockwise
rotation results in negative velocities.

For the purpose of this work, we will utilize four degrees of
freedom to identify the dynamics of Attitude and Altitude.
As such, we will not be identifying the locations in the XY
plane, but instead, we will solely rely on the data provided
by inertial (accelerometer and gyrometer) and ultrasonic
sensors.

2.3 Framework and Virtual Environment

The data acquisition involved the interconnection of three
devices, as depicted in Fig. 2: a joystick that was connected
to computer and controlled by the user, and was used
to direct the drone to avoid indoor collisions and also to
stimulate all the dynamics relevant to identification. The
drone and computer were linked through WiFi to enable
signal transmission and reception.

To carry out the data acquisition tests, the Toolbox
AR Drone Simulink Development-Kit v1.13 provided by



Fig. 3. Input and Output Signals for AR Drone Data
Acquisition.

Sanabria (2013) is used, where the signals available for
sending via WiFi are the Vertical Velocity Commands
vzref , Yaw Angle Rate Commands vΨref

, Pitch Angle
Reference θref and Roll Angle Reference φref . The values
coming from the drone sensors are: Altitude h, Pitch Angle
θref , Roll Angle ϕ and Yaw Angle ψ. Didactically, the
signals can be visualized in Fig. 3. Note that the estimated
velocity signals on the X axis vx and Y axis vy are not used
in this work.

3. SYSTEM IDENTIFICATION

In this section, the AR Drone will be analyzed as a Linear
Time Invariant (LTI) system with Multiple Inputs and
Multiple Outputs (MIMO). The system’s dynamics of
interest can be decoupled and treated as the intersection
of several Single Input Single Output (SISO) systems,
allowing for the development of stochastic models of the
plant that can be used to design controllers. To achieve
this, the Extended Least Squares (ELS) algorithm will
be utilized, which aims to eliminate polarization in the
models estimated by the purely deterministic Ordinary
Least Squares (OLS) algorithm. This decision is based on
the need to improve the accuracy of the models.

3.1 Time Series Models

There are several families of models to represent dynamic
processes. A very comprehensive example can be described
by

A
(
q−1

)
y(k) = B

(
q−1

)
u(k)q−d + C

(
q−1

) ζ(k)
∆

(1)

where ∆ = 1.

The aforementioned system is referred to as an ARMAX
linear model, which comprises the following components:
ζ, which represents the Gaussian noise; d, the discrete
transport delay; kϵN , the discrete time instant; and q−1,
the discrete time shift operator derived from the Transform
Z+. It is assumed that the system is causal for the
values of k, and the initial values are null 2 (Åström and
Wittenmark, 2013). The system’s input and output are
denoted by u and y, respectively. The model polynomials
2 The discrete-time operator belongs to the discrete-time domain
and is a simplification for the following mathematical operation:
u(k)q−d = u(k − d).

that multiply, respectively, the output, input, and noise of
the system are expressed as
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(2)

It is crucial to consider that in a SISO LTI system, the
number of roots of the polynomials B(q−1) and C(q−1)
should not exceed the number of roots of A(q−1) to main-
tain the system’s causality. Failure to meet this condition
may result in impairment to the causality of the system.

3.2 Ordinary Least Squares

While there is no definitive agreement on the originator
of the Least Squares algorithm, it is commonly attributed
to the notable contributions of Karl Friedrich Gauss in
the late 18th century. This method involves minimizing
the difference between estimated and actual values to
reduce estimation errors, enabling the estimated linear
parameters to closely align with those of the actual plant
parameters (Ljung, 1987).

Let the Vector of Regressors be given in

φT (k) =



−y(k − 1)
...

−y(k − na)
u(k − d)

...
u(k − d− nb)


(3)

and the Vector of real Parameters of the system in

ϑT = [ a1 a2 . . . ana
b0 b1 bnb ] , (4)

The actual output of the system is represented by

y(k) = φT (k)ϑ+ e(k) (5)

which in matrix form is written as
y(0)
y(1)
...

y(N − 1)


︸ ︷︷ ︸

Y

=


φT (0)
φT (1)

...
φT (N − 1)


︸ ︷︷ ︸

Φ

+


e(0)
e(1)
...

e(N − 1)


︸ ︷︷ ︸

E

Y = Φϑ+ E

(6)

where the variable e(k) is an unknown noise.

Let ϑ be the Plant’s Estimated Parameters Vector, the
objective is to minimize the quadratic estimation error
represented in

min
θ̂

|Y − Φϑ̂|2, (7)

whose algebraic manipulation results in the solution in

ϑ̂ =
[
ΦTΦ

]−1
ΦTY. (8)

Therefore, the estimated output of the system can be
written as

ŷ(k) = φT (k)ϑ̂(k) + ξ(k), (9)

where ξ(k) are the residuals from the estimation.



3.3 Extended Least Squares

The ELS tries to explain some bias that can be present
when the OLS fails to represent the behavior of the system
well. For this, the output residuals from the estimation in

ξ(k, i) = y(k)− ŷ(k, i) (10)

are analyzed. The presence of polarization in a system
indicates a strong correlation between the system’s output
and its residuals. To account for such polarization, it is
necessary to model the residuals and identify any Moving
Average polarizations, resulting in a more accurate repre-
sentation of the system’s behavior. This probabilistic mod-
eling approach aims to improve the consistency between
the model and the process behavior, moving beyond the
limitations of a deterministic model.

Adaptations made to the OLS algorithm for obtain ELS
can be viewed in

φ(k, i) =



−y(k − 1)
...

−y(k − na)
u(k − d)

...
u(k − d− nb)
ξ(k − 1, i)

...
ξ(k − nc, i)


ϑT (i) = [ a1 a2 . . . ana b0 b1 . . . bnb

c1 . . . cnc ]

y(k) = φT (k, i)ϑ(i) + e(k)
y(0)
y(1)
...

y(N − 1)


︸ ︷︷ ︸

Y

=


φT (0, i)
φT (1, i)

...
φT (N − 1, i)
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Φ

θ +


e(0)
e(1)
...

e(N − 1)


︸ ︷︷ ︸

E

Y = Φϑ+ E

min
θ̂

|Y − Φϑ̂|2

ϑ̂ =
[
ΦTΦ

]−1
ΦTY.

(11)

It should be noted that the algorithm includes the poly-
nomial C(q−1) in the Parameter Vector. In addition, the
residuals resulting from the estimation error and the vari-
able y(k) are incorporated into the Regressor Vector.

Another notable difference is that the estimated output
is now dependent on a parameter ”i”, which represents
the number of times the algorithm will be computed.
Specifically, in a programming loop that is repeated i-
times, the Parameter Vector will be updated i-times until
the algorithm converges, provided that convergence is
achievable.

Subsequently, the residuals are recalculated as shown in 10
until convergence is attained. Typically, selecting a value

of i within the range of 7 to 30 is satisfactory to observe
convergence, as reported by Aguirre (2007).

4. RESULTS AND DISCUSSION

The obtained results were subjected to quantitative and
qualitative analysis through performance indices, which
included the JMCC (Multiple Correlation Coefficient),
graphical analysis of transient response, and examination
of pole and zero locations. The expectation was that the
mathematical models developed using the employed algo-
rithms would possess adequate capacity for representing
the dynamics relevant to the quadcopter. This, in turn,
would enable more accurate simulation of controller im-
plementation strategies that are closer to the system’s
reality. Details regarding this matter are elaborated in the
following subsections.

To enable the implementation of a decentralized identifi-
cation strategy, several signal acquisitions were performed.
Given that the drone has four inputs, four tests were
conducted, with each one exciting a single input while
the others were held at zero. Once a significant amount
of data was obtained, the correlation function between the
input and output variables of all tests was analyzed. It was
determined that the correlation was negligible, with a con-
fidence margin of 95%. It is important to note that, while
the high performance of controllers in most quadcopters is
typically associated with couplings, the literature suggests
that there are acceptable margins for decentralized control
strategies when stabilizing the AR Drone 2.0. Further-
more, this does not imply significant losses from a control
systems perspective, given the constructive nature of the
quadcopter.

The results are presented separately to emphasize the
unique characteristics of each dynamic. The primary focus
of the comparisons was to evaluate the benefits of the
stochastic identification of the system. Therefore, three
key signals were showcased: the estimated output of the
ARX model, the estimated output of the ARMAX model,
and the actual output of the plant. Additionally, the input
signal for each dynamic was plotted to determine if the
data acquisition was consistent with recommended iden-
tification techniques and if the plant’s response behavior
matched the surveyed models.

Furthermore, the model parameters associated with the
drone dynamics in the ARMAX model in (2) are shown in
table 1.

Table 1. Values of the parameters of the esti-
mated models.

Parameters Altitude Roll Pitch Yaw

d 3 3 3 3
a1 -1.696 -1.471 -1.562 -1.664
a2 0.6931 0.5828 0.6735 0.6669
b0 0.012 0.03727 0.03811 0.02065
c1 -0.01045 0.1092 0.04269 0.008062

For the selection of how many regressors can represent a
good linear approximation for a plant model, was used the
Akaike Information Criterion (AIC) (Akaike, 1974) shown
in

AIC(nϑ) = Nln(σ2
e(nϑ)) + 2nϑ (12)



Fig. 4. A comparison between actual and estimated drone
altitude dynamics responses.

where nϑ is the number of regressors; σ2
e(ϑ) is the variance

of the residual which is a function of nϑ; and N is the size
of the sampled data.

4.1 Altitude

The quadcopter’s altitude is controlled through vertical
velocity commands that are determined by the magnitude
of the joystick’s analog buttons. It is important to ensure
that the drone does not ascend too high and collide
with the ceiling or descend too low, which could cause
turbulent non-linearities due to the wind generated by the
propellers. Notably, external disturbances like wind were
not encountered during the indoor tests.

The accuracy of the ARMAX model in representing the
actual output of the system was confirmed by the transient
response depicted in Fig. 4, and the convergence of the ELS
algorithm.

4.2 Roll and Pitch

The roll and pitch dynamics of the drone are regulated
by angular reference signals, where the desired angle in
radians is set as a reference and transmitted to the system.
The drone measures its inertial sensors to return the
achieved values, as the reference and output values are
in the same physical quantity.

Fig. 5 and Fig. 6 depict the estimated system responses for
the roll and pitch dynamics, respectively. While the ARX
model appears appropriate based on visual analysis, the
cross-correlation function of the residuals with the actual
output showed a polarization exceeding the 95% signifi-
cance level. Thus, the ARMAX model is recommended to
eliminate this bias.

4.3 Yaw

During experimental tests, it was observed that the clock-
wise and counterclockwise rotation commands for the
drone resulted in different changes in the yaw angle mag-
nitude, demonstrating non-linearity in the system. Fig. 7
confirms this observation, showing a clockwise tendency in
the drone’s movement. This non-linearity was also evident

Fig. 5. A comparison between actual and estimated drone
roll dynamics responses.

Fig. 6. A comparison between actual and estimated drone
pitch dynamics responses.

Fig. 7. A comparison between actual and estimated drone
yaw dynamics responses.

in tests utilizing a Pseudo Random Binary Signal (PRBS)
with zero mean, as the drone did not maintain its cen-
tralized angular position and varied significantly in both
directions of rotation.



As this article’s objectives do not address special treat-
ments for non-linearities, a linear model was developed
to stabilize the drone’s glide. The designed linear con-
trollers must be robust enough to accomplish this task. To
achieve this, a linear identification approach was utilized,
which represents an average between the two directions
of rotation. However, this article opens the possibility for
future studies to use non-linear controllers through other
techniques, such as Artificial Neural Networks and Fuzzy
Logic.

4.4 Indexes for comparison between models

To quantitatively and comparatively judge the quality of
the estimated models, two indices will be used: the JSEQ

(Sum of Squared Error) given by

JSEQ =

N∑
k=1

[y(k)− ŷ(k)]2 (13)

and the JMCC (Multiple Correlation Coefficient) given by

JCCM = 1− JSEQ∑N
k=1[y(k)− ȳ]2

(14)

where ȳ is the average actual output, y(k) is the estimated
output, and N is the total number of samples.

The JSEQ is calculated as the sum of the squared error
between the actual output and the output estimated by the
OLS and ELS algorithms. A smaller JSEQ value indicates
that the model is closer to the real values of the system,
making it more appropriate. Therefore, JSEQ is used as a
comparative tool to identify the algorithm that produces
the closest results to the real system values.

In contrast, JMCC can be used for both comparison and
to evaluate the model’s quality relative to the actual
output. According to Coelho and Coelho (2004), for several
practical applications, a JMCC value between 0.8 and 1 is
considered adequate. JMCC is a measure of the correlation
coefficient between the actual output and the model’s
output. A higher JMCC value indicates a better correlation
between the model and the actual system, demonstrating
its suitability for practical use.

Table 2. Values of the indexes of the estimated
models.

Parameters Pitch Roll Altitude Yaw

ARX
JSEQ 0.5550 0.3522 48.8069 3172.1
JMCC 0.9346 0.9592 0.9114 0.7107

ARMAX
JSEQ 0.4922 0.2514 0.6379 184.0303
JMCC 0.9420 0.9708 0.9988 0.9832

5. CONCLUSION

The results obtained from the study were found to be sat-
isfactory, supporting the hypothesis that moving average
parcel identification leads to significant improvements in
the resulting models. The decoupled identification strategy
used in the study was successful in producing appropriate
models for the design and simulation of controllers for the
Parrot AR Drone 2.0. These results provide a reference for
future researchers aiming to apply linear stochastic control
algorithms to the drone.

The analysis of JMCC indices showed that the ARX mod-
els may be sufficient for practical applications, but the AR-
MAX models produced significant improvements, leading
to better stabilization solutions for the AR Drone 2.0. The
use of ELS algorithm resulted in improved identification
quality of linear systems compared to the classic OLS
algorithm.

Moreover, all models were identified with the same sam-
pling period, simplifying the analysis of the drone dy-
namics. Table 2 presents the indices of the main results
obtained from the study, which support the feasibility of
the proposed methodology.
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