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Belém, Brazil
asilveira@ufpa.br

2nd Marco Sagliano
Dept. of Navigation and Control Systems

German Aerospace Center (DLR)
Bremen, Germany

marco.sagliano@dlr.de

3rd Rodrigo Trentini
Dept. of Electrical Engineering

Federal Institute of Santa Catarina (IFSC)
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Abstract—In this work the Generalized Predictive Control
(GPC) is revisited in order to assess its capabilities in handling
colored noise disturbances using a novel design procedure. The
proposed method is investigated in a simulated case study of
spacecraft emulation. Such emulation is proposed by combin-
ing a network-controlled quadcopter and a set of computer-
based control algorithms that impose approximated spacecraft
dynamics to the aerial system. The corresponding model was
built upon real registered flight data. The contribution of this
paper is twofold: first, we propose a novel GPC design in the
colored noise case. Second, we assess the use of quadcopters
to investigate spacecraft guidance and control algorithms.
Simulation results confirmed the proposed methodology as
a possible low-budget spacecraft-emulation alternative for a
future experimental setup. One of the main findings of the
current investigation is that no significant enhancements coming
from the use of GPC in minimizing the chattering of the
control signal under the colored noise disturbance case could be
observed. An important discussion on this matter and possible
solutions are presented for future investigations.

Index Terms—Generalized Predictive Control, Spacecraft
Guidance and Control, Stochastic Control, Colored Noise Dis-
turbance, Quadcopter.

I. INTRODUCTION

In this work, two contributions are given: a theoretical
one, related to a novel design method for Generalized
Predictive Control (GPC) in the colored noise disturbance
case, and the prospects for a future experimental setup,
by proposing a 3-Degrees-of-Freedom (3-DOF) spacecraft
cyber-physical emulation system that combines a network-
controlled quadcopter and a set of computer-based control
algorithms to impose approximated spacecraft dynamics to
the quadcopter in order to work as a low budget alternative
to assess spacecraft guidance and control algorithms.

The GPC was first proposed in 1987 as a stochastic control
technique [1]. Its stochasticity was inherited from previous
early stage stochastic model predictive control techniques,
such as minimum variance control, where modeling un-
certainties and measurement noise were associated with a
stochastic process affecting the controlled system dynamics.

However, over the years GPC gained popularity not for its
stochastic control properties, but rather for the simplicity of
tuning. Then, despite its formal presentation had assumed
the colored noise disturbance case, it is seldom used in this
way.

GPC stochastic properties comes from the integrated mov-
ing average part of an auto-regressive model (ARIMAX)
that is used to design the minimum variance predictor.
However, in order to avoid a more complex design procedure,
only auto-regressive models integrated with exogenous inputs
(ARIX) are usually implemented, as can be observed even
in the state of the art related to GPC. For example, in [2], a
ARIX-based GPC was used for active stability augmentation
and vibration reduction of an aeroelastic tiltrotor model with
simulated random external disturbances, such as wind gusts
and measurement noise in order to assess actuator chatter.
In [3], the GPC was used to optimize the performance of
a turbofan engine and despite the theoretical background
presented assumed the colored noise case, for simplicity, the
authors adopted the ARIX model.

In [4], GPC was applied to control switching systems
under unknown switching sequences, where the authors have
remarked the importance of the stochastic approach but stated
that the ARIX approach was the “sole focus of the current
paper, with the intention of elaborating the general case in a
upcoming research”. And many more similar occurrences of
such simplification in GPC can be found in the state of the
art, as in [5]–[8].

This design procedure gap for the GPC can be traced
back to its introduction in 1987 and just a few papers
have been reported using the GPC based on the colored
noise case but without long range prediction, as remarked
in [9]. Even though, the GPC has proven to be an efficient
and reliable control method using ARIX. In this sense, in
this paper we propose a systematic procedure to design the
complete GPC based on ARIMAX and compare its results
to the ARIX-based case in a spacecraft emulation with
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simulated random disturbances in the colored process noise
case, representing stochastic modeling uncertainties which
are inherent in aerospace control applications.

Autonomous rendezvous and docking of spacecrafts and
on-orbit or in-space servicing, assembly and manufacturing
(OSAM/ISAM) [10] operations require safe and reliable
control systems, preferably with validation studies using
experimental testbeds. However, guidance and control ex-
periments with spacecrafts in zero gravity are, of course,
very expensive. So, on Earth 1-g alternatives are employed
in order to assess the reliability of softwares, processors,
sensors and actuators, such as in the Test Environment for
Applications of Multiple Spacecrafts, TEAMS [11], of the
German Aerospace Center. TEAMS is designed to experi-
ment space technologies using 3-DoF and 5-DoF spacecrafts
using robotic-platform systems floating over a flat granite
surface by means of air bearings.

In this work we investigate by simulations the prospects of
emulating 3-DoF spacecrafts by using hardware and software
technologies of quadcopters readily available for implement-
ing interesting applications, such as the augmented reality
game in [12], developed by the European Space Agency, that
used the cyber-physical combination of a quadcopter and a
software to simulate the docking procedure to the Interna-
tional Space Station, so to study autonomous rendezvous and
docking methods.

In our proposed spacecraft emulation, however, we
changed the flight dynamics of the quadcopter in a simulated
study, approximating its translational dynamics to a double-
integrator system while assuming the validity of such model
for short-time and short-distance experiments for spacecrafts
in free flight [13]. A model-following control approach was
adopted (cf. Figure 1), allowing to embed the double integra-
tor dynamics and to emulate the spacecraft’s mass. However,
later on, we present that the control signal chattering due to
noise feedback is a major issue, since it increases the power
loss and jeopardizes the quadcopter’s structural and electrical
components. Thus, we investigate the ARIMAX-based GPC
to reduce the control chattering, expecting to exploit the
GPC’s prediction ability so to enhance the model-following
control performance in order to propose a future experimental
on-Earth testbed for 3-DoF spacecraft emulation.

This paper is organized in the following form: in Sec. II the
proposed GPC design in the colored noise case is addressed,
focusing solely in the aimed contribution, so assuming the
single-input, single-output (SISO) with no saturation con-
straints. Then, the spacecraft emulation solution is described
in Sec. III, followed by the quadcopter system identification
and model assessment by simulations with the approximated
spacecraft simulated dynamics, which is the subject of Sec.
IV. ARIMAX versus ARIX-based GPC simulations are as-
sessed. The results obtained are then discussed in Sec. V,
and followed by some concluding remarks in Sec. VI.

II. ARIMAX-BASED GPC DESIGN

The GPC came after the Generalized Minimum Variance
Control (GMVC) by incorporating trajectories of output and
control predictions into a finite-time optimal control problem,

maintaining GMVC’s Minimum Variance Predictor based on
the ARIMAX model, given by:

Ak(q
−1)y(k) = Bk(q

−1)u(k − d) + Ck(q
−1)

w(k)

∆
, (1)

Ak(q
−1) = 1 + ak,1q

−1 + · · ·+ ak,na
q−na ,

Bk(q
−1) = bk,0 + bk,1q

−1 + · · ·+ bk,nb
q−nb ,

Ck(q
−1) = 1 + ck,1q

−1 + · · ·+ ck,nc
q−nc .

(2)

In Eq. (1), y(k), u(k − d), w(k), defined in the discrete
time domain k ∈ Z0+, are, respectively, the output, the
d samples delayed input and a zero mean Gaussian noise
disturbance of variance σ2

w. The system is assumed to be
linear parameter varying with its polynomials in Eq. (2)
defined in the backward-shift operator domain, q−1, and
∆ = 1 − q−1 is the discrete-difference operator, such that
∆u(k) = u(k) − u(k − 1). Henceforth, the sub-index k
in the polynomials are going to be omitted for the sake of
compactness.

The colored noise disturbance is characterized by the
presence of the term C(q−1)w(k)

∆ in the model. This leads
to the following stochastic distrubance process w̄(k):

w̄(k) = w̄(k − 1) + C(q−1)w(k), (3)

which is incremental and having the white noise w(k) being
modified by the C(q−1) polynomial. Thus, the participation
of this polynomial when its order is nc ≥ 1 establishes the
colored noise disturbance case.

The GPC considers the following optimization problem:

min
∆u−→

J = E





NyX

j=d

[y(k + j)− r(k + j)]
2

+λ

NuX

j=1

[∆u(k + j − 1)]
2



 , (4)

∆u−→ =
�
∆u(k) ∆u(k + 1) · · · ∆u(k +Nu − 1)

�T
,

(5)

subject to the dynamical constraints of the system in Eq. (1).
In Eq. (4), E[.] denotes the mathematical expectation

operator, Ny ∈ Z+ is the output prediction horizon, Nu ∈
Z+ ≤ Ny is the control prediction horizon and λ ∈ R+

is a control effort weighting factor. The reference sequence
r(k+ j) for j = d, . . . , Ny is assumed to be known a priori.

The solution to the problem in Eq. (4) is to determine the
sequence ∆u−→ in Eq. (5) that minimizes J , which depends
on the knowledge of y(k + j) for j = d, . . . , Ny , as in

y(k + j) =
B(q−1)

∆A(q−1)
∆u(k + j − d) +

C(q−1)

∆A(q−1)
w(k + j),

(6)

where the future values of the stochastic disturbances are
unknown. In the GPC, the solution comes from the Mini-
mum Variance Predictor, by separating this unknown future
information into past-to-present and future, as follows:

C(q−1)

∆A(q−1)
w(k + j) =

Fj(q
−1)

∆A(q−1)
w(k)

| {z }
Past - to - Present

+Ej(q
−1)w(k + j)| {z }

Future

(7)
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By doing so, the future part is neglected and assumed as
a prediction error of the predicted output based on data
available up to time k, i.e.,

ŷ(k + j|k) = B(q−1)

∆A(q−1)
∆u(k + j − d) +

Fj(q
−1)

∆A(q−1)
w(k).

(8)

The prediction error is then associated with the neglected
future term, given by:

Ej(q
−1)w(k + j) = y(k + j)− ŷ(k + j|k), (9)

w(k) =
y(k)− ŷ(k|k)

Ej(q−1)
. (10)

Substituting Eq. (10) into Eq. (8), the Minimum Variance
Predictor is obtained as follows:

ŷ(k + j|k) =
Ej(q

−1)B(q−1)∆u(k + j − d) + Fj(q
−1)y(k)

q−jFj(q−1) +∆A(q−1)Ej(q−1)
.

(11)

To determine these Ej(q
−1) and Fj(q

−1) polynomials, for
j = d, . . . , Ny , it is required the solution of the Diophantine
equation obtained from Eq. (7), that is:

C(q−1) = q−jFj(q
−1) +∆A(q−1)Ej(q

−1). (12)

The Ej(q
−1) and Fj(q

−1) polynomials have the following
structure:

Ej(q
−1) = 1 + ej,1q

−1 + · · ·+ ej,(j−1)q
−(j−1) (13)

Fj(q
−1) = fj,0 + fj,1q

−1 + · · ·+ fj,naq
−na , (14)

so that their orders are nej = j − 1 and nfj = na, ∀j ∈ N.
By comparing the Diophantine equation in Eq. (12) and

the characteristic polynomial of the predictor in Eq. (11), the
Minimum Variance Predictor can be redefined as

ŷ(k + j|k) =
Ej(q

−1)B(q−1)∆u(k + j − d) + Fj(q
−1)y(k)

C(q−1)
.

(15)

So, the colored noise case can deeply affect predictions since
the roots of C(q−1) are the poles of j predictors.

By assuming that C(q−1) roots are supervised and asymp-
totic stability is guaranteed, the predictor incorporates the
colored noise filter as follows:

ŷ(k + j|k) =
Ej(q

−1)B(q−1)∆uf (k + j − d) + Fj(q
−1)yf (k).

(16)

Thus, GPC in the colored noise case utilizes a filtered output
feedback and reconstructs the control signal variation after
solving ∆uf (k), respectively, as follows:

yf (k) =
y(k)

C(q−1)
, (17)

∆u(k) = C(q−1)∆uf (k). (18)

From this point on there is a gap in the GPC literature
in terms of solving Ej(q

−1) and Fj(q
−1) in a generalized

way and aided by computational methods for the colored

noise case. Methods commonly employed are the recursive
form [14] or a different approach independent of Ej(q

−1)
and Fj(q

−1), which is state-space Model Predictive Control
[15], based on state-space realizations and being equivalent
to ARIX-based GPC. To overcome this gap, we propose the
novel approach presented in the next section.

A. GPC with colored noise

Without loss of generality we are going to assume d = 1
and Nu = Ny , so a complete trajectory for predictions is
generated for j = 1, . . . , Ny and then it can be truncated as
required as we are going to present later on.

We start by converting the ARIMAX model into an
observable canonical realization in the state-space, given by:

x(k) = Ax(k − 1) +B∆u(k − 1) + Γw(k − 1),

y(k) = Cx(k) +w(k),
(19)

A =




−ā1
...

−ānā

Ina

01×na


 , B =




b0
...

bnā


 , (20)

C =
�
1 0 · · · 0

�
, Γ =




c1 − ā1
...

cnā
− ānā


 ,

(21)

where I and 0 are an identity and a null matrix, respectively,
and the new barred elements seen in A and Γ comes from
the ARIMAX nā = na + 1 augmented polynomial

Ā(q−1) = ∆A(q−1) = 1 + ā1q
−1 + · · ·+ ānāq

−nā . (22)

Considering the proofs obtained by [16] for GMVC’s
Minimum Variance Predictor polynomials, then the same
must apply to the GPC as well, as it follows:

Ej(q
−1) = 1 +CA0Γq−1 +CA1Γq−2

+ · · ·+CA(j−2)Γq−(j−1), (23)

Fj(q
−1) =

�
q0 q−1 · · · q−na

�
A(j−1)Γ. (24)

Now that the solution for Ej(q
−1) and Fj(q

−1) is feasible
in the colored noise case, the predictor is further developed
as follows:

ŷ(k + j|k) = Gj(q
−1)∆uf (k + j − 1) + Fj(q

−1)yf (k),
(25)

with Gj(q
−1) = Ej(q

−1)B(q−1) so that for j = 1, . . . , Ny

this becomes

G1(q
−1) = g0 + ḡ1,0q

−1 + · · ·+ ḡ1,nb
q−nb

| {z }
nb terms

G2(q
−1) = g0 + g1q

−1 + ḡ2,0q
−2 + · · ·+ ḡ2,nb

q−(nb+1)

| {z }
nb terms

...
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GNy (q
−1) = g0 + g1q

−1 + · · ·+ gNy−1q
−(Ny−1)

+ ḡNy,0q
−Ny + · · ·+ ḡNy,nb

q−(nb+Ny−1)

| {z }
nb terms

.

(26)

The last nb terms of every Gj(q
−1) will operate on

∆uf (k) regressors ∆uf←−−, from ∆uf (k−1) until ∆uf (k−nb),

whilst the first and up to Ny − 1 elements of Gj(q
−1) will

operate on the control predictions, ∆uf−−→, i.e., ∆uf (k) up to
∆uf (k+Ny − 1). Rewriting the GPC predictor in a matrix-
vector form simplifies the notation as follows:

ŷ = G+ Ḡ∆uf←−−+ Fyf←− = G+ fr, (27)

fr is the Free Response Model,

G =




g0 0 0 · · · 0

g1 g0 0
. . .

...

g2 g1 g0
. . . 0

...
...

...
. . . 0

gNy−1 gNy−2 gNy−3 · · · g0



, (28)

where G is the lower triangular matrix of the Toeplitz
matrix constructed based on the vector formed by the first
Ny − 1 elements of GNy

(q−1) shown in Eq. (26), while
Ḡ is formed by the extracted last nb terms of every
Gj(q

−1) = Ej(q
−1)B(q−1) for j = 1, . . . , Ny , which leads

to

Ḡ =




ḡ1,0 · · · ḡ1,nb

ḡ2,0 · · · ḡ2,nb

... · · ·
...

ḡNy,0 · · · ḡNy,nb


 . (29)

And the F matrix is obtained as follows:

F =




�
A0Γ

�T
�
A1Γ

�T
...�

ANy−1Γ
�T



=




f1,0 · · · f1,na

f2,0 · · · f2,na

... · · ·
...

fNy,0 · · · fNy,na


 .

(30)

Vectors for predictions and regressors of the filtered output
and control, in the colored noise case, are defined as:

ŷ =




ŷ(k + 1|k)
...

ŷ(k +Ny|k)


 , yf←− =




yf (k − 1)
...

yf (k − na)


 , (31)

∆uf−−→ =




∆uf (k)
...

∆uf (k +Ny − 1)


 ,∆uf←−− =




∆uf (k − 1)
...

∆uf (k − nb)




(32)

From this generalized structure for the preditor, based on
j = 1, . . . , Ny , the developed matrices can be truncated in or-
der to comply with systems with time delays, j = d, . . . , Ny ,
and when Nu < Ny is desired. In this case, the first d − 1
lines of ŷ, G, Ḡ, F are eliminated, only the first Nu columns
of G are utilized and ∆uf−−→ goes until ∆uf (k +Nu − 1).

B. GPC control law in the colored noise case

By using the Minimum Variance Predictor, developed
previously, the GPC optimization problem can be rewritten
in the following vector-matrix form:

min
∆uf−−→

J = [ŷ − r]
T
[ŷ − r] + λ∆T

uf−−→
∆uf−−→, (33)

in which the trajectory of future references is defined as

rT =
�
r(k + 1) r(k + 2) · · · r(k +Ny)

�
. (34)

Substituting the GPC predictor in Eq. (27) into J ,

J =

�
G∆uf−−→+ fr − r

�T �
G∆uf−−→+ fr − r

�
+ λ∆T

uf−−→
∆uf−−→,

(35)

J = ∆T
uf−−→

�
GTG+ λI

�
∆uf−−→− 2∆T

uf−−→
GT [r− fr]

+ [r− fr]
T
[r− fr] . (36)

The control sequence ∆uf−−→ that minimize J is obtained by
solving

min
∆uf−−→

J =
∂J

∂∆uf−−→
= 0, (37)

that results in

∆uf−−→ =
�
GTG+ λI

�−1
GT [r− fr] = K [r− fr] . (38)

The matrix gain of the GPC is then defined as

K =
�
GTG+ λI

�−1
GT =

�
k1 · · · kNy

�T
. (39)

Then, the receding horizon control is employed and just the
first term of the control sequence is applied, and

∆uf (k) = k1







r(k + d)
...

r(k +Ny)


 − Ḡ




∆uf (k − 1)
...

∆uf (k − nb)




−F




yf (k − 1)
...

yf (k − na)





 . (40)

In order to implement the control increment ∆u(k) based
on ∆uf (k), the relation shown in Eq. (18) is used:

∆u(k) =

∆uf (k) + c1∆uf (k − 1) + · · ·+ cnc∆uf (k − nc),
(41)

and, finally, the control signal is built as follows.

u(k) = u(k − 1) +∆u(k) (42)
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III. 3-DOF SPACECRAFT EMULATION

The proposed spacecraft emulation is illustrated in Figure
1. In a real setup, the quadcopter would be the physical
part, while the reference model and the controller would
be part of a computer software. Specifically to our future
experimental setup, the AR.Drone 2.0 quadcopter model,
from Parrot Drones SAS, is considered. The software part
runs within Mathwork’s Matlab/Simulink and communicates
with the quadcopter by means of a WiFi TCP/IP connection
with User Datagram Protocol, operating at the sampling
period of Ts = 65 ms or sampling frequency fs ≈ 15.3846
Hz, which limits our operational range up to the Nyquist
frequency at 7.6923 Hz.

Fig. 1. Model-following closed-loop control to force the quadcopter to
behave as the spacecraft’s reference model.

The experimental setup will be comprised of the original
payload of the AR.Drone 2.0, in which its embedded inertial
measurement unit works along with an ultrasound-based al-
timeter and a camera-based optical flow velocity sensor, mea-
suring the altitude (m), the longitudinal or forward/backward
velocity (m/s), and the lateral or right/left velocity (m/s),
given in the body-axes reference frame.

The quadcopter is assumed to be an asymptotically stable
multi-input multi-output linear time varying system, de-
scribed by

Aky(k) = Bku(k − d) +Ckv(k). (43)

Ak, Bk and Ck are diagonal matrices of polynomial
functions of three ARIMAX subsystems, as shown in Eq.
(2), related to the output y(k) which is a column vector
comprised of the body-axes translational dynamics defined in
the North-East-Down coordinate system [17], so that yx(k),
yy(k), yz(k), are, respectively, the longitudional velocity
along the x-axis, the lateral velocity along the y-axis and
the vertical position along the z-axis. The input u(k) is also
a column vector, comprised of dimensionless actuator thrust
commands in the range [−1; 1] ∈ R3, for ux(k), uy(k),
uz(k). These paired input to output system is assumed to
be coupled but uncertain, and possible mutual interference is
considered as the stochastic disturbance process v(k).

The controller of the emulation system is a function of the
spacecraft’s and the quadcopter’s dynamics, whose objective,
based on the block diagram shown in Figure 1, is defined as:

u(k) = Hk(q
−1)em(k). (44)

This controller Hk(q
−1) must act by means of this in-

termediate control vector u(k) in order to eliminate the
model-following error, em(k) = ym(k) − y(k), between

the quadcopter closed-loop behavior and the spacecraft’s
reference model, the latter defined as:

Am(q−1)ym(k) = Bm(q−1)u(k − 1). (45)

This system must incorporate dual discrete-time integrators
in order to emulate the spacecraft’s dynamics in free-flight
for short-time and short-distance intervals [13].

To simplify notation, henceforth the controller synthesis
is presented for the SISO case and can be replicated for the
three axis. The spacecraft’s reference model with the double
discrete integrators and Ts = 65 ms is given by:

Ym(z)

Ur(z)
=

�
1

M

� �
0.002113 + 0.002112z−1

�
z−1

(1− 2z−1 + z−2)
. (46)

These parameters are related to the zero-order-hold trans-
formation of the double integrators system, defined in the
continuous s frequency domain as follows:

Ym(s)

Ur(s)
=

�
1

M

�
1

s2
, (47)

where M is the spacecraft’s mass in Kilogram. Note, how-
ever, that this is a positional reference model and so it can
only be applied to the altitude control problem within this
particular application with the AR.Drone. For the velocities
along the x and y axes the following velocity reference model
is considered:

sYm(s)

Ur(s)
=

�
1

M

�
1

s
, (48)

in which the zero-order-hold equivalent at Ts = 65 ms is
given as follows:

∆Ym(z)

Ur(z)
=

�
1

M

�
0.065z−1

1− z−1
. (49)

The main control problem is to find a control solution
u(k) so that y(k) → ym(k) for all k > 0, governed by the
emulator’s input ur(k). To better illustrate this problem, let
us consider a simple example with a proportional control
solution of the following form:

u(k) = Kpem(k) = Kp

�
Bm(q−1)

Am(q−1)
ur(k − 1)− y(k)

�
,

(50)

where Kp is a proportional gain.
Considering Eq. (50) we can remark that the model-

following control performance can be enhanced by boosting
the Kp gain. However, if y(k) is noisy, then u(k) chattering
is increased and could compromise the quadcopter’s mechan-
ical and electrical components.

Differently from proportional control, the GPC is expected
to workaround the noise problem in y(k) and can take
advantage of the spacecraft model working as a reference
signal as shown in Eq. (50), since such a reference can be
precisely predicted using Eq. (46). Thus, the problem in Eq.
(50) can be optimally solved by the GPC as in Eq. (33), by
assuming the vector of future references constructed based
on the spacecraft’s model response,

rT =
�
ym(k + 1) · · · ym(k +Ny)

�
. (51)

The GPC can also workaround the quadcopter’s noisy output,
y(k), since such a signal is not directly fed back to the
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controller but is in fact filtered by GPC’s minimum variance
predictor, ŷ, shown in Eq. (27). This, of course, generates
the dependence on the knowledge of the quadcopter’s model,
which is covered next.

IV. QUADCOPTER PARAMETRIC ESTIMATION

For real-time adaptation and optimization of the GPC
we must focus on real-time parametric estimation based on
most recent data, whilst for the purpose of simulating the
quadcopter for the proper assessment of the ARIMAX-based
GPC, we must focus on simulation models best suited to
represent the quadcopter system in a more general form,
considering a longer data set representing the quadcopter
input/output average behavior. Thus, the non-recursive Least-
Squares estimator was adopted and is discussed next.

Considering the ARIMAX model shown in Eq. (1), let us
assume the following parametric estimation problem based
on the following estimator:

ĥ(k + 1) = ĥ(k) + L(k) [y(k)− ŷ(k)] , (52)

ŷ(k) = C(k)ĥ(k). (53)

The main problem is to optimally estimate the
parameter vector ĥ(k) that minimizes the error
v(k) = w(k)

∆ = y(k) − ŷ(k), in which ĥ(k) and C(k) are
constructed based on parameters and signal regressors of

y(k) =
Bk(q

−1)

Ak(q−1)
u(k − d) +

Ck(q
−1)

Ak(q−1)
v(k), (54)

so that

y(k) =
�
−y(k − 1) · · · −y(k − na)

�



a1
...

ana




+
�
u(k − d) · · · u(k − nb)

�



b0
...

bnb




+
�
v(k − 1) · · · v(k − nc)

�



c1
...

cnc


+ v(k)

(55)

which leads to

y(k) = C(k)ĥ(k) + v(k). (56)

The non-recursive Least-Squares parametric estimator, in
the ARIMAX case, is solved based on a previously identified
ARX model [18], and it works on the data by processing the
whole data set of N samples all at once.

By assuming a ARX model with temporary Ā(q−1) and
B̄(q−1) polynomials,

y(k) =
B̄(q−1)

Ā(q−1)
u(k − d) + v(k), (57)

a similar representation as the one shown in Eq. (56) applies,
however, not solely for k, but for the whole data set given
by k = 0, . . . , N , that is:




y(0)
...

y(N)




| {z }
Yls

=




C(0)
...

C(N)




| {z }
Cls

h̄+




v(0)
...

v(N)




| {z }
vls

. (58)

The main problem is to estimate this temporary vector h̄,
containing the parameters of Ā(q−1) and B̄(q−1), given by:

h̄ =
�
CT

lsCls

�−1
CT

lsYls. (59)

To estimate the ARIMAX model a second turn of the
non-recursive Least-Squares estimator is used, now based on
the ARIMAX vector of regressors as shown in Eq. (55), by
applying the estimated noise vector vls so to determine all
three (final) polynomials, A(q−1), B(q−1), C(q−1).

This form of parametric estimation focusing on determin-
ing simulation models is experimental and supervised by the
designer. Thus, the determination of the model’s order and
how it fits a certain model-validation data set is a human
decision, generally quantified and assisted by some sort of
“size of a signal” method, such as the mean of the squared
estimation error or the normalized root mean squared error
(NRMSE), in which the latter was adopted in this work, given
by

JNRMSE = 1−

s
NP

k=0

|y(k)− ŷ(k)|2

s
NP

k=0

|y(k)− ȳ|2
, (60)

with ȳ representing the mean average of y(k).
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Fig. 2. Longitudinal and lateral velocities, and altitude models validation.

In Figure 2 it is shown the validation results of the
ARIMAX simulation models obtained for yx(k) and yy(k)
velocities, and yz(k) altitude, in which the NRMSE achieved
was 83%, 81% and 78%, respectively, where the closer
to 100% the better. These results were based on indoor
registered flight data of the quadcopter. Half of the data was
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used for the parametric estimation procedure and the other
half for validation. The complete data set is available at [19].

The estimated ARIMAX polynomials were as follows:

• Longitudinal velocity model polynomials:

A(q−1) = 1− 1.5870q−1 + 0.5939q−2

B(q−1) = 0.0176− 0.1625q−1

C(q−1) = 1− 0.1794q−1 + 0.1739q−2

(61)

• Lateral velocity model polynomials:

A(q−1) = 1− 1.8328q−1 + 0.8387q−2

B(q−1) = −0.0318 + 0.0966q−1

C(q−1) = 1− 0.5561q−1 + 0.5536q−2

(62)

• Altitude model polynomials:

A(q−1) = 1− 1.4452q−1 + 0.4454q−2

B(q−1) = 0.0087 + 0.0157q−1

C(q−1) = 1− 0.0065q−1 + 0.0063q−2

(63)

The discrete time delay observed within the registered flight
data was d = 3, which is equivalent to a 195 ms delay.
Also, the estimated variances for the process noise v(k) were:
σ2
vx = 0.0332, σ2

vy = 0.0644, σ2
vz = 0.0359.

In Figure 3 it is shown the validation results but this time
including the colored process noise. In total, 1000 Monte
Carlo simulations were realized and they depict the possible
dispersion that can occur (at least probabilistically) to the
longitudinal and lateral velocities, and to the altitude. In
Figure 3, every red line tells a possible “story” (i.e., events
that follow the influence of a new Gaussian sequence), whilst
the blue line in the middle is one of the stories when there
is no colored process noise acting on these systems.

Fig. 3. The dispersion of the longitudinal and lateral velocities, and altitude,
when the estimated stochastic uncertainties are applied over 1000 Monte
Carlo simulations. Every red line tells a “possible story”, and, among these
stories, the one in blue that was registered in flight.

Theoretically, the GPC, as proposed in [1], was designed
to deal with the colored noise case as depicted in Figure 3,
by incorporating the appropriate ARIMAX model into the
design and this is investigated next by using the GPC design
technique proposed in this work.

V. SIMULATION EXAMPLES

In the simulation examples covered in this section, the
system’s models are assumed to be known, so that no
real-time parametric estimation is adopted and the GPC is
optimized both in the ARIX and ARIMAX cases in order to
investigate and analyze the (unfortunately small) contribution
in the proposed colored noise case design for the modeled
quadcopter. The mass of the emulated spacecraft reference
model adopted was M = 10 kg. The GPC was tuned with
Ny = 12, Nu = 3, λ = 50 for the longitudinal and lateral
velocities control, and Ny = 12, Nu = 3, λ = 1 for the
altitude control.

It is important to remark that the tuning of the prediction
horizons, as well as the control energy weighting factor of
GPC, were found by trial and error while observing the
output signals, looking for an offset-free model-following
performance achieved by a realizable control signal (within
the range of the command thrusters, [−1, 1]). Thus, despite
other possible combination of tuning parameters could be
achieved, such decision factor does not affect the presented
results, since the tuning will be the same for both ARIX-
and ARIMAX-based methods, and does not change their
difference in dealing with the colored process noise and their
capability to achieve offset-free model-following control.
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Fig. 4. Longitudinal and lateral velocities, and altitude model-following
using GPC. Simulations without the colored process noise. The reference
ur(t) for the altitude control is the one presented, whilst for the velocity
cases it was omitted since its amplitude was 10 times higher.

In Figure 4 it is shown the simulation results when there
is no process noise, thus ARIX and ARIMAX behave in
the same way. In this figure it is possible to observe that the
GPC can achieve a good model-following performance since
both velocities and the altitude were tracked flawlessly. Also,
the required thrust commands were all within the saturation
limits. These results were obtained by assuming square waves
as the reference model’s input ur(k), in which the one
adopted for the velocities control loops was omitted from
the plot since its unitary amplitude would have diminished
the details of the thrust control signals shown.

In Figure 5 the longitudinal model-following control re-
sults for ARIMAX-based versus ARIX-based GPC when
the colored process noise is considered is presented. The
other results for the y-axis and z-axis were omitted due
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Fig. 5. Longitudinal velocity model-following control simulations with
colored process noise in ARIMAX-based versus ARIX-based GPC.

to space limitations but they follow Figure 5 similarly. The
control signal chattering is beyond the acceptable threshold
since it trespasses the saturation limit and within this par-
ticular “story”, it is possible to observe a small reduction
in the variability of input and output signals in favor of
the ARIMAX-based case, also confirmed numerically, as
the output and input variances were respectively 4.38% and
10.59% smaller than the ARIX-based case. This also holds
after 1000 “stories”, as the average variance percentage
reduction, for the output and control, was 3.35% and 9.37%,
respectively.

Unfortunately, the variance reduction observed for the
longitudinal velocity control problem could not be observed
in the same way in the lateral and altitude cases. In the lateral
model-following control, the average variance reduction after
1000 simulations resulted in an increase of 20.31% and a
reduction of 9.77%, respectively, with respect to the output
and control variances.

For what concerns the altitude model-following, the output
and control variances, after 1000 simulations, resulted in
a slightly worsening (0.09%) and improvement (0.11%),
respectively. Thus, in the lateral control the ARIMAX-based
GPC increased the output variance considerably, while in the
altitude problem it is possible to assume a draw.

VI. CONCLUSIONS

In this work the algorithm to design and implement the
ARIMAX-based GPC was presented in detail, filling this
gap in the GPC’s literature by proposing a systematic way
to incorporate the C(q−1) polynomial into the design for
any long-range prediction horizon requirement. Also, it was
presented the prospects for an experimental setup of a 3-
Degrees-of-Freedom spacecraft cyber-physical emulator.

Based on the results of the considered case study and
despite not achieving a significant contribution in reducing
the control signal chattering in the colored noise case, the
outcome is valuable in the sense that this could diminish the
expectations on GPC, by researchers and practitioners, in
terms of how it can handle the colored noise disturbances.

Additionally, we assessed the presented ARIMAX- and
ARIX-based cases assuming v(k) as an output noise. In

this scenario the ARIMAX-based GPC outperformed the
ARIX case. In the longitudinal velocity, the output and
control variances were, respectively, 1.92% and 12.78%
smaller. The same was observed for the lateral velocity, with
1.80% and 36.11% smaller, and for the altitude, 0.62% and
0.47% smaller. Thus, despite not directly intended for it,
the proposed ARIMAX-based design may also allow further
investigations in the more conventional output noise case.
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