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Abstract— This paper presents two tuning design possibilities for an incremental digital RST controller based
on the pole placement technique, whose parameters are obtained by solving the Diophantine equation. Since
output and input disturbances occur in real systems, it is done the stability and robustness analysis of the control
loop by means of the sensitivity functions loop shaping. To evaluate the controller performance for such tunings,
it is analyzed the integral perfomance index for the error and control effort. The difference between the tuning
designs is presented by numerical simulation for a underdamped second order system, showing that the proposed
method can provide solutions with good performance.
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1 Introduction

Most of control systems design problems have
specifications in terms of robustness, disturbance
rejection and reference tracking. However, it is
very difficult to achieve all these specifications
using one degree of freedom controllers (Galdos
et al., 2011). In this case, it is preferred to deal
with two degree of freedom controllers, which al-
low treating disturbance rejection and reference
tracking independently. It allows good perfor-
mance for the system whilst preserving its robust-
ness index when well tuned. In addition, these
controllers assume the compromise that measure-
ment errors do not generate excessive fluctuations
in the control signal (Ostertag and Godoy, 2005).

Reference Signal Tracking (RST) controller
design is the elegant pole placement based con-
troller among the various methods available for
linear SISO systems. Basically RST controller has
a two degree of freedom structure and comprises of
three polynomials namely R, S and T which are
usually tuned by pole placement method, based
on the solution of a Diophantine equation, which
provides a control law that imposes a desired
closed loop dynamic. It has become very use-
ful in industrial applications. Moreover, system
dynamics characteristics are transferred to the
RST control law, allowing the achievement of two
levels of performance in tracking and regulation
(Landau, 1998).

The diophantine equation does not have a
unique solution and different solutions of the RST
controller parameters have different implications
related to the desired performance specifications
(Sung and Hara, 1988; Galdos et al., 2011). Thus,
this paper presents two methods to tune R, S and
T that provide the best performance for the closed
loop system, keeping, for both cases, with the T
fixed. It is made by evaluating the complementary
sensitivity and sensitivity functions loop shaping.

The first tuning is obtained by prioritizing R with
respect to S and the second tuning is obtained by
prioritizing S with respect R.

Although the pole placemente technique is al-
ready consolidated in the control area, this arti-
cle appears as a contribution of the exploration of
the pole placement technique by showing among
several possible solutions for the Diophatne equa-
tion, two ways of tuning the polynomials R and S
for systems without integrators that provide bet-
ter performance for reference tracking and distur-
bance rejection. The analysis of robustness of the
tunings is made by using the complementary sen-
sitivity and sensitivity functions.

Finally, simulations are shown to evaluate the
benefits of this method in terms of the reference
tracking, as well as for the regulation in the pres-
ence of disturbances. Highlights are made for
plants without integrators and because of this, de-
sign model augmentation by integrator addition is
used (Landau and Zito, 2005).

2 RST Canonical Structure

According to Figure 1, it is assumed that a dis-
crete time process, with control signal u (k), mea-
sured output signal y (k) and input and output
disturbances v (k) and p (k), respectively, is de-
scribed by (Franklin et al., 2013)

y(k) =
z−1B(z−1)

A(z−1)
u(k) +

z−1B(z−1)

A(z−1)
v(k) + p(k)

(1)
where

{
A(z−1) = 1 + a1z

−1 + ...+ anaz
−na

B(z−1) = b0 + b1z
−1 + ...+ bnbz

−nb (2)

As shown in Figure 1, the RST controller is
structured by R

(
z−1
)
, S
(
z−1
)

and T
(
z−1
)
. By
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Figure 1: RST digital controller canonical form.

assuming a priori v(k) and p(k) to be null, it pro-
vides a control law u(k) with the following form:

R(z−1)u(k) = T (z−1)yr(k)− S(z−1)y(k) (3)

where R
(
z−1
)
, S

(
z−1
)

and T
(
z−1
)

are
weighting polynomials of the control, system out-
put and reference signals, respectively. The choice
of these polynomials allows solving the problem of
regulation and reference tracking and are given by

R(z−1) = r0 + r1z
−1 + r2z

−2 + ...+ rnrz
−nr

S(z−1) = s0 + s1z
−1 + s2z

−2 + ...+ snsz
−ns

T (z−1) = t0 + t1z
−1 + t2z

−2 + ...+ tntz
−nt

(4)
According to Landau and Zito (2005) there

are two forms of getting RST controller: Posi-
tional RST and Incremental RST. The Positional
RST structure is represented by Equation 3 and
does not guarantee reference tracking and distur-
bance rejection for systems without integrators,
while the incremental RST does.

Therefore, in order to satisfy the desired per-
formance specifications for systems without inte-
grators and to guarantee reference tracking and
disturbance rejection, integral control action must
be added, which for digital controllers is called
incremental action. The discrete time represen-
tation of the incremental action of the RST con-
troller is obtained by including ∆ in the Equation
3, such a shows the Equation 5.

∆u(k) =
T (z−1)

R(z−1)
yr(k)− S(z−1)

R(z−1)
y(k) (5)

Since ∆ = 1− z−1 acts on the controller out-
put giving it an incremental action given by

∆u(k) = u(k)− u(k − 1) (6)

the control signal applied to the plant is

u(k) = u(k − 1) + ∆u(k) (7)

For design purposes and to compensate the
Equation 5, the Equation 1 is assumed to be given
by

y(k) =
z−1B(z−1)

∆A(z−1)
∆u(k) (8)

Remaking the Equation 8, the augmented
model of the plant is given by Equation 9.

∆A(z−1)y(k) = z−1B(z−1)∆u(k) (9)

Where ∆A
(
z−1
)

=
(
1− z−1

)
A
(
z−1
)
. The

Equation 9 represents the augmented system by
incremental action. This assumption ensures ref-
erence tracking and disturbance rejection. There-
fore, the incremental RST controller design by
pole placement technique is done based on the
Equation 9.

It is important to emphasize that the model
that represents the plant does not change. The
new mathematical formulation in Equation 9 was
done only to add the incremental action and to
allow the design of the incremental RST. In addi-
tion, the control signal that will be applied to the
plant is that shown in Equation 7. Therefore, the
closed loop system is obtained by including the
Equation 5 into Equation 9, given

y(k)

yr(k)
=

z−1B(z−1)T (z−1)

R(z−1)∆A(z−1) +B(z−1)S(z−1)
(10)

3 Pole Placement Technique

This section presents the pole placement tech-
nique in the case in which no process zeros are
cancelled and the aim is to determine the coef-
ficients of the RST controller that gives desired
closed-loop poles for the system. In addition, it is
required that the system follows command signals
in a specified form. This is a simple method that,
properly applied, can give practically useful con-
trollers for systems without integrators (Åström
and Wittenmark, 2013).

The RST controller is tuned according to
pole placement technique presented in Åström and
Wittenmark (2013). This technique is comprised
of a dynamic compensator, where the feedback
data comes from an observer system, avoiding
pole and zero cancelations, ensuring greater ro-
bustness.

Thereby, since no process zero is cancelled,
the desired closed loop poles are then composed
by two parts: one that corresponds to the con-
troller Hc

(
z−1
)

and another that corresponds to

the observer dynamic Ho

(
z−1
)

(Åström and Wit-
tenmark, 2008). The closed loop system zeros are
composed by the open loop zeros of B

(
z−1
)

and

the feed forward part in T
(
z−1
)

to compensate
the static gain and to guarantee offset free between
reference and output signal. Thus, the closed-loop
system with desired performance is

y(k)

yr(k)
=
z−1B(z−1)T (z−1)

Hc(z−1)Ho(z−1)
(11)



In Equation 11, the polynomial Hc

(
z−1
)

is
the polynomial that contains the desired poles and
Ho

(
z−1
)

= A
(
z−1
)

is the observer polynomial.
Such polynomials are given by

Hc(z
−1) = 1 + d1z

−1 + ...+ dndz
−nd (12)

Ho(z−1) = 1 + a1z
−1 + ...+ anaz

−na (13)

The desired closed loop polynomial is

H(z−1) = Hc(z
−1)Ho(z−1) (14)

According to pole placement technique, the
Equations 10 and 11 must be the same, leaving to
the diophatine equation summarized by

Hc(z
−1)Ho(z−1) = R(z−1)∆A(z−1)

+B(z−1)S(z−1) (15)

In a dynamic compensator it is also natural to
introduce the command signals in such way that
it does not generate observer errors. It is done by
considering T

(
z−1
)

being

T (z−1) = ToffHo(z−1) (16)

where Toff = Hc(1)
B(1) . That is, when z → 1,

which is the static contribution of these polyno-
mials. The parameter Toff is a parameter that
compensates the error between reference and plant
output signal by static approach (Åström and
Wittenmark, 2008).

The polynomials R
(
z−1
)

and S
(
z−1
)

can be
obtained by solving the Equation 15. Since the
Diophantine equation do not provides a unique
solution and different solutions of the RST pa-
rameters provide different performance related
to the reference tracking and disturbance rejec-
tion, this paper proposes two tunings for R

(
z−1
)

and S
(
z−1
)
, keeping T

(
z−1
)

as in Equation 16.
These two tuning guarantee good performance for
reference tracking and disturbance rejection.

3.1 RST tuning prioritizing R
(
z−1
)

polynomial

This tuning is achieved by considering nr = 1 and
ns ≤ 2. This condition satisfies the Equation 15.
Therefore, the RST controller is characterized by

R(z−1) = r0 + r1z
−1

S(z−1) = s0 + s1z
−1 + ...snsz

−ns (17)

T (z−1) = t0 + t1z
−1 + ...+ tntz

−nt

3.2 RST tuning prioritizing S
(
z−1
)

polynomial

Different from the first tuning, this second tuning
is achieved by considering nr = 0 and ns ≥ 1.
That condition satisfies the Equation 15. There-
fore, the RST controller is characterized by

R(z−1) = r0

S(z−1) = s0 + s1z
−1 + ...snsz

−ns (18)

T (z−1) = t0 + t1z
−1 + ...+ tntz

−nt

It is important to emphasize that the RST
tuning by prioritizing R

(
z−1
)

polynomial is more
recommended for systems whose desired closed
loop response is of second order regardless of sys-
tem order. On the other hand, the second tuning
is recommended for systems whose desired closed
loop response is of first order regardless of sys-
tem order too, because it satisfies the diophantine
equation in 15.

4 Sensitivity Functions

Usually, sensor measurement noises and model-
ing errors are unmodeled high frequency dynam-
ics. Reference signals and load disturbances are
low frequency dynamics. Since these effects can
often cause unsatisfactory behaviour in control
loops that was designed without taking them into
account, it is important to have controllers that
guarantee performance and robustness despite of
these undesirable effects (Åström and Witten-
mark, 2013).

Thus, this work covers robustness analysis us-
ing sensitivity functions magnitude plots in the
frequency domain. It is used to provide mea-
sures of how sensitive the closed loop system is
to changes in the plant. From these functions the
Gain Margin (GM) and Phase Margin (PM) are
obtained to quantify the trade off between robust-
ness and performance to guarantee a suitable well
tuned controller (Seborg et al., 2010; Åström and
Wittenmark, 2013).

The complementary, input and output sensi-
tivity functions are, respectively,

T (z−1) =
z−1B(z−1)T (z−1)

R(z−1)∆A(z−1) +B(z−1)S(z−1)
(19)

Si(z
−1) =

z−1B(z−1)R(z−1)

R(z−1)∆A(z−1) +B(z−1)S(z−1)
(20)

So(z−1) =
R(z−1)∆A(z−1)

R(z−1)∆A(z−1) +B(z−1)S(z−1)
(21)

The input sensitivity function Si

(
z−1
)

char-
acterizes the effect of a disturbance v (k) acting
on the plant input, whereas the output sensitiv-
ity function So

(
z−1
)

characterizes the effect of a
disturbance p (k) acting on the plant output (see
Figure 1).



Both are shaped for disturbance rejection
analysis. The complementary sensitivity T

(
z−1
)

is equivalent to the closed loop transfer function
for set point changes and it is shaped for reference
tracking analysis.

In a SISO (Single Input Single Output) sense,
for achieving the desired reference tracking and
disturbance rejection, So

(
z−1
)

must be kept

small (
∣∣So

(
ejωTs

)∣∣ → 0) and the complemen-

tary sensitivity T
(
z−1
)

must be kept unit value

(
∣∣T (ejωTs

)∣∣ → 1) at low frequencies, while at

high frequencies the absolute value of the So

(
z−1
)

must go to unity (
∣∣So

(
ejωTs

)∣∣ → 1) and T
(
z−1
)

must be kept bounded (
∣∣T (ejωTs

)∣∣ → 0) for
guaranteed good sensor noise suppressing ability
(Doyle et al., 1990; Seborg et al., 2010).

The input sensitivity function Si

(
z−1
)

must

be kept small (
∣∣Si

(
ejωTs

)∣∣ → 0) at low and
high frequencies (Seborg et al., 2010; Deepika and
Narayan, 2015). Robustness analysis is done us-
ing the maximum amplitude ratios of the com-
plementary sensitivity MT and output sensitivity
functions MS , which are defined by

MT
∆
= max

ω

∣∣T (ejωTs)
∣∣ (22)

MS
∆
= max

ω

∣∣So(ejωTs)
∣∣ (23)

These variables are used to quantify the sensi-
bility of the control loop to the excitation signals
under consideration. It means that small MS val-
ues make the system less sensible to input or out-
put disturbance p (k), whereas MT considers the
influence of the reference signal yr (k), and it is
equivalent to the amplitude of the resonant peak
as well, that in general, is desirable to be kept
small (Seborg et al., 2010).

According to Seborg et al. (2010), MS should
be in the range of 1.2 to 2 and MT should be in the
range of and 1.0 to 1.5. These requirements pro-
vide good GM and PM for the closed loop system
and maintain the compromise between robustness
and performance. GM and PM are obtained by

GMS ≥ 20 log 10

(
Ms

MS − 1

)
(24)

PMS ≥ 2sin−1

(
1

2MS

)(
180

π

)
(25)

GMT ≥ 20 log 10

(
1 +

1

MT

)
(26)

PMT ≥ 2sin−1

(
1

2MT

)(
180

π

)
(27)

The Gain Margin is the amount that the loop
gain can be increased before reaching the stabil-
ity limit, while the Phase Margin is the amount
of phase lag required to reach the stability limit
(Ogata, 2010; Stevens et al., 2015).

5 Results

Consider a second order under-damped system
with a sampling period Ts = 0.05 s:

y(k)

u(k)
=
z−1(−0.001785 + 0.1864z−1)

1− 1.664z−1 + 0.8558z−2
(28)

The desired closed loop response has a damp-
ing coefficient ξd = 0.9 and natural frequency
ωn = 10 rad/s. Thus Hc(z

−1) and Ho(z−1) are

Hc(z
−1) = 1− 1.2451z−1 + 0.4066z−2 (29)

Ho(z−1) = 1− 1.664z−1 + 0.8558z−2 (30)

The obtained results of the closed loop system
for both tuning of the RST controller are shown
in Figure 2 to 6.

In order to quantitatively and qualitatively
evaluate the performance deviation of the system
control loop when it is controlled by RST con-
troller, the ISE (Integral Square Error) perfor-
mance index was chosen, where e(k) is the dif-
ference between the reference yr(k) and the mea-
sured output y(k), calculated by:

ISE =

n∑
k=1

e(k)
2

= (yr (k)− y (k))
2

(31)

It was also chosen to evaluate the control ef-
fort u(k) of the controller the TVC (Total Varia-
tion Control) performance index, calculated by:

TV C =

n∑
k=1

|u (k)− u (k − 1)| (32)

In the Figure 2 at the instant of time t = 1 s
is applied a unit step input to the system and at
the instant of time t = 5 s is applied a load dis-
turbance v(k) at the plant input with magnitude
of 0.5. In the Figure 3 at the instant of time t = 1
s is applied a unit step input to the system and at
the instant of time t = 5 s is applied a load distur-
bance p(k) at the plant output with magnitude of
0.5.

It is verified that the two controller tunings
provide good performances for reference tracking,
however for disturbance rejection the RST con-
troller tuning prioritizing R

(
z−1
)

provides a bet-
ter performance than the RST controller tuning
prioritizing S

(
z−1
)
. It is concluded by the calcu-

lated performance index ISE and TVC presented
in Figure 2 and 3. The Bode diagram of the open
loop and closed loop system is presented in Fig-
ure 4. The closed loop system corresponds to the
complementary sensitivity function T (z−1), which
guarantees reference tracking (see Equation 19).
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Figure 2: Step response with input disturbance.
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Figure 4: Bode diagram.

The figures 5 and 6 present, respectively, the
shape of frequency response of the input and
output sensitivity functions Si(z

−1) and So(z−1)
draw by equations 20 and 21. Both controller
tunings provide satisfactory disturbance rejection,
moreover the incremental RST controller tuned by
prioritizing R(z−1) is less sensible to input or out-
put disturbance than the incremental RST con-
troller tuned by prioritizing S(z−1). Therefore,
the figures 5 and 6 justify the better disturbance

rejection of the RST controller tuned by prioritiz-
ing R(z−1) presented in figures 2 and 3.
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The robustness analysis is presented in tables
1 and 2. In the Table 1 are available the Gain
Margin and Phase Margin of the complementary,
input and output sensitivity functions when the
RST controller is tuned prioritizing R(z−1).

In turn, in the Table 2 are available the Gain
Margin and Phase Margin of the complementary,
input and output sensitivity functions when the
RST controller is tuned prioritizing S(z−1).

Table 1: Robustness analysis of the RST con-
troller tuning prioritizing R(z−1).

Function Gain Margin Phase Margin

T (z−1) GM = 6.02 dB PM = 60◦

Si(z
−1) GM = 1.23 dB PM = 7.5◦

So(z−1) GM = 15.14 dB PM = 48.7◦

In the Table 3 are shown the maximum singu-
lar values of the complementary, input and output
sensitivity functions when the RST controller is
tuned prioritizing R(z−1) and S(z−1). It is noted
that MT for both tunings are the same, which ex-
plains the identical closed loop response. On the



Table 2: Robustness analysis of the RST con-
troller tuning prioritizing S(z−1).

Function Gain Margin Phase Margin

T (z−1) GM = 6.02 dB PM = 60◦

Si(z
−1) GM = 0.78 dB PM = 4.9◦

So(z−1) GM = 7.41 dB PM = 33.3◦

other hand, the MSi
and MSo

with the RST con-
troller tuning by prioritizing R(z−1) are smaller
than the MSi and MSo with the RST controller
tuning by prioritizing S(z−1), which explains the
better disturbance rejection of the RST controller
tuned prioritizing R(z−1) in Figure 2 and 3.

Table 3: Maximum singular values of T (z−1),
Si(z

−1) and So(z−1).

Function R(z−1) tuning S(z−1) tuning

T (z−1) MT = 1.00 MT = 1.00

Si(z
−1) MSi

= 7.5705 MSi
= 11.5743

So(z−1) MSo = 1.2120 MSo = 1.7423

6 Conclusions

In this paper, it was presented a very simple
idea to solve the Diophantine equation in order
to achieve a RST controller capable to deal bet-
ter with input and output disturbances in con-
trol loop. Two different approaches to design a
RST controller that was presented in section 3
provided better performance for reference track-
ing and disturbance rejection for systems with-
out integrators, according to the section 4, which
presented the stability and robustness analysis of
the controller by using the sensitivity functions for
both designs.

From numerical simulations of a second or-
der under-damped system, performance index ISE
and TVC calculated in the time response and Gain
Margin and Phase Margin of the sensitivity func-
tions calculated in the frequency response pre-
sented in this paper, it was concluded that the
RST controller designed prioritizing R(z−1) pro-
vided a better disturbance rejection with lower
control effort and also it was guaranteed bigger
Gain and Phase Margin when compared to the
controller designed prioritizing S(z−1) and the
two approaches provide the same reference track-
ing for the control loop.
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