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Abstract— In this work it is presented the design procedures and experimental results of a centralized multi-
variable LQG control system for longitudinal and lateral speed hold autopilot for the AR.Drone 2.0 quadcopter.
The main contribution is that instead of assuming that the longitudinal and lateral dynamics are completely
decoupled, the quadcopter is modeled as a coupled multivariable state-space system with transport time-delay.
The system identification procedure, by extended recursive least-squares estimation, is done directly in the state-
space form and a detailed description of the equations derived for this project is given. The LQG design is aided
by analysis on the system’s step-response tests in the time domain and is based on a non orthodox Kalman filter
design, dual to the LQR. The proposed speed hold autopilot is evaluated using the system’s model and then
applied to the real process. The experimental platform used was a free add-on toolbox for Matlab/Simulink, also
used as a benchmark control system with a ready-to-fly example of decentralized proportional control system
for the AR.Drone 2.0. Results summarized in a table of integral performance indexes and a discussion over the
formalism of the LQG method and its applications to flight control systems concludes the contributions of this
work.

Keywords— Speed hold autopilot, Linear Quadratic Gaussian, Linear Quadratic Regulator, Kalman Filter,
AR.Drone 2.0.

1 Introduction

In this paper it is presented the design procedures
and experimental results of a centralized multi-
variable linear quadratic Gaussian (LQG) control
system for the longitudinal and lateral speed hold
autopilot of a quadcopter, the Parrot’s AR.Drone
2.0, which is a low cost unmanned aerial vehicle
(UAV) developed and sold by Parrot.com. More-
over in this text the AR.Drone 2.0 will be ad-
dressed simply as the AR.Drone and drone for
quadcopters in general.

To the best of the authors’ knowledge, what is
uniquely investigated in this paper is the use of an
optimal centralized multivariable control design
technique on the AR.Drone, whereas decentral-
ized and proportional-integral-derivative (PID)
control techniques are dominant among the au-
tomatic flight control systems used with quad-
copters. In other words, at least for the AR.Drone,
the standard procedure is to divide the multiple-
input, multiple-output (MIMO) system into sev-
eral single-input, single-output (SISO) subsystems
assuming its dynamics to be decoupled, and then,
successive control-loops may be closed forming a
complex sub-optimal cascaded and decentralized
control system.

One of the disadvantages of decentralized con-
trol in flight control systems is that every control-
loop affects the other, and just after tuning an al-
titude hold autopilot, the longitudinal speed hold
autopilot may disturb the former control-loop and
vice-versa, sometimes giving rise to oscillatory be-

havior or even instability. Optimal model-based
centralized methods, in contrast, solves the prob-
lem at once for all the variables involved in the
problem, in a way that part of or all subsystems
could be systematically decoupled using Modern
Control Theory multivariable loop-shaping design
techniques, such as LQG design based on principal
gains analysis (Stevens et al., 2016).

The LQG system, i.e. the dynamic com-
pensator comprised of a linear quadratic regula-
tor (LQR) and the Kalman filter estimator (KF),
is the theoretical base of some model-based ad-
vanced linear control techniques, e.g. General-
ized Predictive Control (GPC), shown in Bit-
mead et al. (1990) to be a particular solution
of the LQG. These techniques have in common
the optimization of a cost function and, explicitly
or implicitly, an observable/estimation part and
an estimation-dependent or predictive-dependent
feedback control part. These systems are far more
complex than simple PID loops but they are ex-
tremely necessary for multivariable systems highly
dependent on data fusion and data estimation,
such as flight control systems, in which not ev-
ery variable is measured and some are measured
by multiple sensors, for redundancy and safety in
case of fault or malfunction.

The study of complex control and systems
problems such as those of guidance, navigation
and control (GNC) of aerospace systems once were
restricted to very few places in the world, at least
for experimental tests due to the difficulties to ac-
quire the hardware, the airframe, to have the place



and people to conduct flight tests. However, small
UAVs have allowed many universities, even at de-
veloping countries, to get to known and to face
real problems of 6-DOF (six degrees-of-freedom)
aerial robotics. This is exactly one of the opportu-
nities that just recently opened-up at the Labora-
tory of Control and Systems at UFPA Institute of
Technology, after receiving the financial support
of the Brazilian Research Agency, CNPq, to start
a GNC research using quadcopters.

Since it is a late start in the study of applied
control systems for quadcopters, if compared to
other institutions in and out of Brazil – e.g., re-
searches from the state of Esṕırito Santo with an
earlier start, such as in Santos et al. (2014) and
Santos et al. (2017) – this study began by look-
ing into the history of flight control systems and
its relation to the history of the Control Theory
itself. Then, this information merged with the
information of recent papers on quadcopters au-
topilots, it can be observed astonishing researches
on applications with the drones, but whereas its
control systems are far bellow acceptable if com-
pared to the standards of the aerospace industry,
as those used by Boeing and Lockheed, for ex-
ample (Stevens et al., 2016). Of course that the
lack of control or a bad autopilot is going to de-
teriorate the performance of the quadcopter to a
specific application.

An example of how the AR.Drone’s control
system can compromise the application perfor-
mance is remarked at the Discussions Section in
the paper of Clark et al. (2017). The AR.Drone
was used for autonomous remote visual inspection
to generate a three-dimensional surface-meshed
model of a nuclear intermediate level waste stor-
age drum. The authors used distributed and
scalable proportional controllers and concluded
that their application results would be better
if proportional-derivative (PD) controllers have
been used instead.

The AR.Drone has been used within the aca-
demic scenario with more sophisticated control
approaches, but has not being treated, to the best
of the authors’ knowledge, as a coupled MIMO
system. For example, Armah and Yi (2015),
worked with a PD altitude controller tuned based
on a time-delayed system model; Hernandez et al.
(2014) implemented optimal MPCs to the atti-
tude, altitude and yaw problems and compared
the results to PD controllers and despite outper-
forming the PD implementation, the design was
still based on decentralized controllers, assum-
ing the Drone as a decoupled airframe, control-
ling it as four independent SISO systems; Cri-
ado and Rubio (2015) worked with the Drone
for autonomous path tracking control using PID
and GPC, and for both cases a cascaded con-
trol structure was used, being the inner loop the
speed control loop using non-linear saturation as

an antiwindup method and the outer loop a po-
sition control loop. Their speed control loop had
no control augmentation system (CAS) (Stevens
et al., 2016), counting on a separate non-linear
saturation rule to prevent the integrator wind-up
phenomenon.

Considering the presented short review and
the lack of centralized multivariable control ap-
plied to the AR.Drone, the objective is the design
of a single MIMO LQG system for

• the lateral speed hold autopilot

– with integrated roll rate CAS

• the longitudinal speed hold autopilot

– with integrated pitch rate CAS

This control system design should suffice to point
out the benefits of using LQG-like methods in the
centralized MIMO form for quadcopters. Also,
this simple autopilot with integrated CAS systems
would encourage the search for complete flight
control systems, from the stability augmentation
systems (SAS) to the autopilots, for drones which
a standard GNC structure is not already defined
by the aerospace industry.

All systems models within this paper are
based on discrete linear time-invariant systems
and beyond this introductory part, this work is
organized in the following form: Section 2 is used
to present the control problem, system’s I/Os and
state variables. SAS, CAS and autopilots are also
defined to give some formalism with respect to the
flight control systems industry. In Section 3 it is
explained how to use the recursive least-squares
estimator for state-space modeling, describing a
powerful identification tool to develop complex
state-space systems and adaptive state-space sys-
tems. Section 4 covers the LQG design, as tra-
ditional as it is, all needed steps are shown in
a straightforward manner. In Section 5, a brief
description of the experimental setup for flight
tests, along with its software and hardware used,
is given. This section is finished with the pre-
sentation of the main experimental results and is
followed by the Conclusions.

2 Problem formulation

Following the standards of aircraft practice, the
AR.Drone orientation is given in the x, y, z axes,
in which the usual reference system on Earth is the
ned system, acronym for North-East-down, that
defines positive directions for the x-axis point-
ing (true) North, y-axis pointing East and z-axis
pointing down. Similarly, considering the quad-
copter body-fixed reference frame, the frd sys-
tem – acronym for forward (x-axis or longitudinal
axis), right (y-axis or lateral axis), down (z-axis) –
is considered. According to Stevens et al. (2016),



• Right-handed rotation about the x-axis gives
positive φ, the roll angle.

• Right-handed rotation about the y-axis gives
positive θ, the pitch angle.

• Right-handed rotation about the z-axis gives
positive ψ, the compass heading (yaw) angle.

The φ, θ, ψ are known as the Euler Angles and
they measure the attitude of the airframe with re-
spect to the inertial ned frame. For quadcopters,
changes to φ, θ angles can be used to generate lat-
eral and longitudinal speeds, respectively. In this
way, ideally, a drone can stay at a fixed heading
and change its lateral and longitudinal positions
through roll and pitch changes or even hold its
position if its speeds are null. This is the basic
concept behind a Speed Hold autopilot, described
next among other types of flight control systems.

Automatic flight control systems and func-
tions can be divided into three categories (Stevens
et al., 2016):

• stability augmentation systems, SAS: e.g.
roll damper, pitch damper, yaw damper.

• control augmentation systems, CAS: e.g. roll
rate, pitch rate.

• autopilot functions: e.g. speed hold, pitch-
attitude hold, roll angle hold, heading hold,
altitude hold.

The AR.Drone is a ready-to-fly quadcopter
with a basic stabilizer or SAS for roll, pitch and
yaw damping, along with the autopilot function
for altitude hold. As a ready-to-fly solution, this
drone comes with a ready to use navigation sys-
tem and a complete description is given by Mac
et al. (2018). Within the present work, however,
only the following states are used, shown within
the discrete state vector x(k):

x(k) =
[
v(k) uvel(k) φ(k) θ(k)

]T
, (1)

where v(k), uvel(k) are, respectively, the lateral
speed and longitudinal speed.

For the speed hold autopilot, the control prob-
lem is to control v(k), uvel(k) in order to follow
a 2 × 1 reference speed vector yr(k), preferably
asymptotically and without any steady-state er-
ror. Since to change speeds implicate in changes
in the roll and pitch angles, it is also necessary to
compensate this variables somehow. In the major-
ity of works done with the AR.Drone, it is gener-
ally applied an inner loop design for the roll CAS
and pitch CAS and then the speed hold controller
comes cascaded as an outer loop. However, with
LQG design and with the state vector shown, this
can be done optimally at once and this is the prob-
lem to be solved in this work.

In order to design the LQG system for the
speed hold autopilot with integrated roll rate CAS
and pitch rate CAS, the following design model
will be used:

x(k) = Ax(k − 1) +Bu(k − d) +Gξ(k − 1)

y(k) = Cx(k) + ν(k)

(2)

This state-space model is d-samples delayed with
2-input, 2-output, 4-state variables, linear time
invariant system defined in the discrete-time do-
main, where u(k), y(k), ξ(k), ν(k) are, respec-
tively, the inputs vector, the outputs vector, the
2×1 process and outputs white Gaussian distur-
bances vectors which are related to the model un-
certainties and measurement noise, respectively.

Similar to the controls of an airplane, a drone
can change its roll and pitch angles through
change in momentum as if having ailerons at its
wings and elevator at its tail, but in fact this com-
mands are produced by changes in motor torques
as described, for the AR.Drone, in Mac et al.
(2018). For the present work problem formula-
tion, all that is needed to be known is that the 1st
input modifies the roll angle and the 2nd modi-
fies the pitch angle and throughout this text this
inputs are addressed as ailerons and elevator com-
mands.

The outputs of the system, y(k), are the
measurements of the states v(k), uvel(k), which
are available from the navigation system of the
AR.Drone. Due to this, it must be remarked
that φ(k), θ(k) are estimated by the Kalman filter
system within the LQG. However, it must be re-
marked that the AR.Drone’s φ(k) and θ(k) angles
are available for feedback, but within this paper a
more complicated scenario for state estimation is
going to be covered, considering a malfunction or
the absence of these sensors.

Since the outputs vector is already defined,
the C matrix is readily known as being

C =

[
1 0 0 0
0 1 0 0

]

(3)

The A,B,G matrices, however, are going to be
estimated from recorded flight data as shown in
the next section.

3 State-space system identification

The state-space RLS estimator algorithm can be
further investigated in Malik (2004), but in this
work it is used essentially in the same manner
employed for SISO Auto-Regressive models iden-
tification, in the extended RLS case. Considering
the 4-state variables model shown at (2), four RLS
estimation problems can be solved with respect to
xi(k), i = 1, 2, 3, 4 such that the estimated x̂i(k),



where the hat ˆ denotes estimated signals and pa-
rameters, is given by

x̂i(k) =





x(k − 1)
u(k − d)
ξ(k − 1)





︸ ︷︷ ︸

φrls

T 



Âi×4

B̂i×2

Ĝi×2





︸ ︷︷ ︸

θ̂i

(4)

By using the logged flight data and the esti-
mated states models shown in (4), the RLS algo-
rithm is implemented as it follows:

Li(k) =
Pi(k − 1)φrls(k)

[

1 + φrls
T (k)Pi(k − 1)φrls(k)

] (5)

θ̂i(k) = θ̂i(k − 1) + Li

[

xi(k)− φrls
T (k)θ̂i(k − 1)

]

(6)

Pi(k) =
[

I8×8 − Li(k)φrls
T (k)

]

Pi(k − 1) (7)

ξ(k) = y(k)−Cx̂(k) (8)

The identified AR.Drone model matrices, ob-
tained from logged flight data, after successive
flight runs, in closed-loop with the LQG Speed
Hold autopilot, for offline retuning, are given by

A =









0.9949 −0.0227 0.5332 0.0528

0.0340 0.9392 0.1426 −0.4166

−0.0060 0.0105 0.8496 −0.0148

−0.0038 0.0080 −0.0106 0.7924









B =









0.0917 −0.0216

0.0202 −0.0262

0.0609 0.0275

0.0371 0.0466









G =









0.0074 0.0272

−0.0490 0.0488

0.0071 −0.0080

0.0008 0.0021









(9)

The sampling time used to register the flight data
and also used with all flight control systems in
this work is Ts = 65ms. Also, by analysis of the
flight data, the discrete time-delay d = 6 was ob-
served along with a Gaussian disturbance variance

for ξ(k) =
[
ξ1(k) ξ2(k)

]T
respectively being

σξ
2 =

[
0.0083 0.0041

]
.

It must be remarked that the focus of this
paper is in no way the system identification pro-
cedure. Due to this, there is no need to present
the validation procedure (nor to consider tests
with another parameter estimation technique) but
simply to state that it has worked sufficiently
enough, considering the Parsimony Principle, re-
flecting the process dynamics within the oper-
ational flight condition of all experiments con-
ducted in this work. And also, to cope with this
information, this work is not based solely on sim-
ulations, but it bridges theory and practice, by
applying every concept of the presented theory to
a 6-DOF UAV, under lack of inertial measurement
unit data (no roll and pitch angle sensors), trans-
port time delays and coupled lateral and longitu-
dinal dynamics.

4 LQG system design

Autopilot functions generally requires the flight
system to be hold onto some desired operational
flight condition. Specifically, the Speed Hold can
be used to track and maintain a speed value or reg-
ulate the speeds at zero for quadcopters. In order
to have a LQG system to be used for both refer-
ence tracking and regulation, incremental control
or the velocity form control algorithm must be
used, in order to have an offset free response to
step-like constant references. It means that the
input to the Drone is

u(k) = u(k − 1) +∆u(k), ∆ =
(

1− z−1
)

(10)

where ∆u(k) is the discrete difference of the con-
trol input.

The LQG system design model is then the
augmented by integrators version of the sys-
tem’s model, which is constructed on the ba-
sis of the augmented state vector xa(k) =
[
∆x(k) y(k)

]T
, leading to

xa(k) =
[

A 04×2

CA I2×2

]

︸ ︷︷ ︸

Aa

xa(k − 1) +

[
BP

CBP

]

︸ ︷︷ ︸

Ba

∆u(k − 1)

ya(k) =
[
02×4 I2×2

]

︸ ︷︷ ︸

Ca

xa(k)

(11)

where P is the inverse of the open-loop system
DC gain, P−1 = C(I−A)

−1
B+D. Then P is a

2×2 DC precompensator that is used to compen-
sate the low frequency coupling as suggested in
the Chapter 5 of Stevens et al. (2016), respective
to multivariable frequency-domain techniques. It
must be remarked that in the design model the
total time delay of d = 6 and the Gaussian distur-
bance ξ(k) are not considered, but the design will
be tested onto the simulation model with noise
and delay as presented in (2).

The complete LQG system is shown in the
block diagram of Figure 1, comprised of the
Kalman estimator, the LQR’s gains and how
they connect to the AR.Drone’s simulation model
shown in (2).

4.1 Linear quadratic regulator design

The design of the discrete full state-feedback LQR
system can be found in several books on the sub-
ject of Modern Control Theory. Due to this, it
is briefly presented as a step-by-step design algo-
rithm. First of all, it is assumed that the process
to be controlled is controllable and all its states
are available to be fed back. Specifically to the
AR.Drone’s augmented model, the system is in



Figure 1: Block diagram of the LQG system.

fact controllable, but only x1(k), x2(k) are avail-
able, but all states will later be available by state
estimation usgin the Kalman filter.

The LQR problem, in the infinite horizon and
discrete case for the augmented model, consists on
minimizing the following quadratic performance
index (Bitmead et al., 1990; Stevens et al., 2016):

J =

∞∑

k=0

[
xa

TQlqxa +∆uTRlq∆u
]

(12)

where Qlq is a symmetric positive-semidefinite
weighting matrix for the states minimization and
Rlq is a positive definite symmetric weighting ma-
trix for the minimization of the control increment
∆u(k).

The solution of the LQR problem leads to
the computation of the optimal full state-feedback
gainK that minimizes J when ∆u(k) = −Kxa(k)
is applied to the input of the augmented model
shown in (11) and xa(k) = (Aa −BaK)xa(k−1).
The computation of K is done by

K =
[

Aa
TPlq(∞)Ba(Ba

TPlq(∞)Ba +Rlq)
−1

]T

(13)

where Plq(∞) is solved by the controller case of
the Riccati Difference Equation, when k → ∞:

Plq(k + 1) = AaPlq(k)Aa − Aa
T
Plq(k)Ba(Ba

T
Plq(k)Ba

T

+ Rlq)
−1

Ba
T
Plq(k)Aa + Qlq

(14)

Since the reference tracking case needs to be
covered by this LQR design, the control increment
law changes to (Bitmead et al., 1990):

∆u(k) = −Kxa(k) +Kyyr(k) (15)

where Ky corresponds to the columns of K

that affects y(k) in the augmented state vector

xa(k) =
[
∆x(k) y(k)

]T
, which are the last

two columns in this MIMO case with 2-outputs.
For the AR.Drone Speed Hold controller, the

following weighting matrices were selected by trial
and error while evaluating the unit-step response
and Principal Gains in the frequency domain:

Qlq = diag
(
1 1 103 103 10−2 10−2

)

Rlq = diag
(
50 50

)

(16)

This selection led to the following K, Ky:

K =

[

0.5786 0.1232 2.5691 0.3613 0.0139 −0.0004

0.3136 0.2263 0.9031 −1.4670 0.0008 0.0137

]

Ky =

[

0.0139 −0.0004

0.0008 0.0137

]

(17)

4.2 Kalman filter design

The Kalman filter estimator used in this work,
also known as the output injection estimator, is
designed based on a non orthodox method, which
is dual to the LQR problem, already described
in this work and that allows to pose the estima-
tor quadratic performance index, particularized to
the augmented AR.Drone model, differently from
the common KF literature.

The duality between the LQR and the KF can
be summarized by the following (Stevens et al.,
2016):

LQR KF

Aa ↔ Aa
T

Ba ↔ Ca
T

K ↔ LT

(18)

Then, in order to compute the Kalman optimal
estimator gain L, equations (13) and (14) can be
used appropriately just by doing the substitutions
as depicted in (18). The system to be observed,
however, needs to be observable, which is the case
for the augmented AR.Drone model.

By using the following weighting matrices,
obtained by trial and error while evaluating the
KF convergence to the unit-step and its Principal
Gains in the frequency-domain,

Qkf = I6×6

Rkf = diag
(
105 105

) (19)

the estimator gain L obtained is

L
T

=

[

0.0073 0.0031 0.0002 −25.6E − 6 0.1216 0.0300

0.0025 0.0033 0.0002 −19.6E − 6 0.0294 0.0784

]

(20)

4.3 LQG analysis

The Separation Principle is commonly applied to
linear control systems and it allows the LQR sys-
tem to be designed independently of the Kalman



filter and later to use them together as a dynamic
compensator known as the LQG. The complete
LQG system is simulated considering stochastic
disturbances in the states and in the outputs. It
is also considered that the AR.Drone model has a
transmission delay, d = 6, or 6 periods of delay of
65ms each.

The model shown in (2) is simulated within a
program loop in Matlab, along with the Kalman
estimator system,

x̂a(k + 1) = (Aa−LCa)x̂a(k) +Ba∆u(k) + Ly(k)

ŷa(k) = Cax̂a(k)

(21)

The estimated state vector of the augmented sys-
tem is then passed to the LQR controller that
computes the control increment law, given by

∆u(k) = −Kxa(k) +Kyyr(k) (22)

Finally, the control increment is compensated us-
ing the inverse of the DC gain, P, of the open-loop
system, and sent to the input of the AR.Drone
model equation as shown in (2):

u(k) = u(k − 1) +P∆u(k) (23)

The main simulation results are presented
from figures 2 to 4. Unfortunately, due to the
sake of compactness, the Principal Gains curves
and robustness analysis will not be shown. How-
ever, it is possible to observe in figures 2 and 3
that the LQG designed is over-conservative, with
a settling-time close to 16s and smooth control sig-
nals even under noisy output measurements. This
conservative behavior has granted a successful and
safe flight at the first try within the experimental
environment to be described in the next section.

In Figure 4, only four estimated state vari-
ables are presented, which were considered more
important to be covered in this analysis. Observe
how the Roll and Pitch rates have been filtered
and also how they are asymptotically recovered
when a Roll Angle and a Pitch Angle are settled
to maintain the speeds of the references. This is
the Roll Rate and Pitch Rate CAS integrated in
the Speed Hold design. This results are now going
to be investigated with the real AR.Drone.

5 The experimental setup and results

The experimental setup is comprised of an
AR.Drone linked to Mathworks’ Matlab/Simulink
using the AR Drone Simulink Development-Kit
V1.1 made by Sanabria and Mosterman (2014),
addressed from now on as the DevKit.

The DevKit comes with simulation examples
and real experimental diagrams for Simulink. The
communication link between Simulink and the
AR.Drone is completely independent from the
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Figure 2: AR.Drone with LQG in simulation: con-
trolled outputs.
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Figure 3: AR.Drone with LQG in simulation: con-
trol signals.

DevKit and is in fact a WiFi solution from Par-
rot, which allow the establishment of a TCP/IP
connection between a client computer and the
AR.Drone as the server. The DevKit works
on sending and receiving data packets over this
TCP/IP network and converting data types and
organizing everything in a very simple and intu-
itive way for control systems engineers.

The LQG Speed Hold autopilot was embed-
ded within a block called Baseline Controller in
the DevKit, substituting all Proportional control
systems within this block, except for the Propor-
tionals Heading Hold and Altitude Hold autopilots
of the DevKit’s Baseline Controller.

The only experimental test presented in this
work is the hovering flight or longitudinal and lat-
eral speeds regulation. For the hovering test, in
order to have a basis of comparison common to
every AR.Drone user, the LQG system results are
compared to the Hover WiFi example that comes
with the DevKit.

The experimental results of the LQG and P
controllers are shown in figures 5 and 6. Estimated
states by the Kalman filter, available only for the
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Figure 4: AR.Drone with LQG in simulation: es-
timated states.

LQG results, are shown in Figure 7. Along with
these results, in Table 1, some discrete quadratic
indexes that quantifies how much power is within
a data window, is used to verify the power of
the lateral and longitudinal speed errors and the
power of the control signals used to regulate these
speeds. The ISE index is associated to the er-
rors and ISU to the control signals, whilst both
are computed based on the following incremental
quadratic index:

Jpower = (wTw)Ts (24)

where w is a dataset vector containing the infor-
mation which the power is wanted to be known.

Observing the signals in figures 5 and 6 it is
very clear that the LQG results could keep the
speeds closer to zero despite the noisy measure-
ments. The LQG is also more economic, since
the control signals magnitudes are clearly smaller
than the Proportional case. In terms of perfor-
mance and efficiency/economy, these results are
confirmed by the quantities shown in Table 1.

It is important, however, to remark that this
comparison is between a MIMO LQG system and
a two SISO P controllers and it is unfair in-
deed. However, this is just a preliminary work,
at least with the AR.Drone, to present how a
centralized MIMO LQG design could be done
for this quadcopter, but this remark needs to be
made, since several complex applications are ap-
pearing, day-by-day, with quadcopters among hu-
mans, and when humans are involved with aerial
vehicles, search the history as shown by Stevens
et al. (2016) and it is clear that at least for the
AR.Drone there is plenty of space for tests with
the standards of aerospace engineering.

6 Conclusions

This work has covered the design and applica-
tion of a Speed Hold autopilot for the Lateral and
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Figure 5: AR.Drone with LQG in real flight: con-
trolled outputs.
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Figure 6: AR.Drone with LQG in real flight: con-
trol signals.

Longitudinal dynamics of an AR.Drone 2.0 quad-
copter system. This autopilot had integrated Roll
Rate and Pitch Rate control augmentation sys-
tems and the design has also covered how to model
the airframe based on registered flight data and
the application of the Recursive Least-Squares in
state-space. The control design method adopted
is a standard in the flight control systems litera-
ture, the Linear Quadratic Gaussian method.

The major advantage of MIMO LQG is the
time required to design and implement complex
multivariable control systems, which is a short
time, when the design technique and the use of
linear algebra is an everyday tool for the control

Table 1: Performance indexes for Lateral and Lon-
gitudinal dynamics.

Ctrl. Type P LQG

LatSpd ISE 0.9364 0.39228
LatCmd ISU 0.21532 0.0011896
LonSpd ISE 1.1502 0.20757
LonCmd ISU 0.3212 0.0076623
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Figure 7: AR.Drone with LQG in real flight: es-
timated states.

engineer. This advantage comes from the solution
of an optimization problem, to all state variables
at once, by solving a single algebraic equation in
the LQR and Kalman filter design.

The drawback of the centralized MIMO LQG
design is its mathematical background complex-
ity and the slow learning curve of such techniques
involved. These are generally passed on to engi-
neering students during the Graduate stage only
and the availability of a real process with 6-DOF
to study and apply the learned concepts of linear
systems theory is very rare. In general, those who
study the MIMO LQG deeply are somehow doing
research on GNC problems for aerospace systems,
while quadcopter drones are now being studied
and used by a much wider group in every niche of
science and final applications will be compromised
if badly designed flight control systems are being
used at the stability level of these drones.

This study with the AR.Drone will continue
in several directions. The next step is a complete
MIMO LQG system encompassing the Altitude
Hold and Heading Hold autopilots, substituting
the whole Baseline Controller block from the Dev-
Kit. It is also underway the development of a local
positioning system based on low cost depth sen-
sors that would allow Guidance experiences to be
conducted for waypoint tracking. It is also ex-
pected that in the following years model following
design techniques will be implemented and embed-
ded within the AR.Drone firmware using a newer
development kit for Simulink. This kind of tests
will allow experiences of dynamic emulation of mi-
crogravity systems within the lab, or how would
be to pilot a quadcopter within different pressur-
ized scenarios, among many other control systems
experiences that might appear during this journey.
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