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Abstract— Motor imagery is a mental stimulation that trig-
gers oscillatory events in sensorimotor rhythms often used in
brain-computer interface applications, as well as a stimulus
used to understand brain activity and improve the rehabilitation
process of spinal cord injury people. Using the data extracted
from an electronic game designed for a rehabilitation purpose,
this paper describes the steps to extract the EEG synchroniza-
tion patterns during the Hand Laterality Judgment Task that
stimulates motor imagery processes, i.e., implicit motor im-
agery. As result, we obtained the curves of synchronization, in
dB values, that showed different levels of synchronization be-
tween alpha and beta bands and an activity mostly distributed
over centro-parietal and parietal regions.
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I. INTRODUCTION

The decrease and increase in synchronization of the sen-
sorimotor rhythms (SMR) are called event-related desynchro-
nization (ERD) and event-related synchronization (ERS), re-
spectively [1]. ERD/ERS phenomena are also known as an
event-related spectral perturbation (ERSP) and it occurs dur-
ing the motor imagery (MI) process, in which the subject
imagines the movements of their body parts, commonly the
hands, but also involving the foot and tongue, performed in
repetitive trials. In the hand actual or motor imagery activ-
ity, the ERD patterns are, preponderantly, contralateral in the
function of the hand imagined whilst the ERS are ipsilateral
[2].

Electroencephalography (EEG) is an important tool to in-
vestigate brain activities, due to it is a noninvasive technique,
relatively low-cost, and high temporal resolution [3]. There-
fore, works using EEG data to estimate ERD/ERS patterns
have been documented in the literature, focusing on classifi-
cation problems, which is a fundamental step to the Brain-
Computer Interface (BCI) systems application [4, 5]. For MI,
the time-frequency analysis has key-role in the detection and
estimating of the ERD/ERS values [3], since the motor im-
agery task induces events that modulate the ongoing alpha
(8− 12 Hz) and beta (13− 30 Hz) activities [2], frequencies
that compound the SMR. The modulation of the alpha and
beta bands can be express, for instance, in relative change

(unit in %), power ration (unit in dB), and subtraction (unit in
µV 2/Hz) [3].

The methods for ERD/ERS estimation have importance to
BCIs based on motor imagery also called MI-BCI. MI is ex-
tensively used in BCI systems due to discriminative stimulus
proprieties, translated into EEG synchronization values, and
also to involve a not expensive signal acquisition [6]. The
experimental paradigm for motor imagery stimulated with a
cue, in repetitive trials for each class, has been reported in
research, with the goal to enhance MI-BCI systems accuracy
[7, 8]. When the motor imagery is stimulated in an indirect
way, we have implicit motor imagery. For instance, the hand
mental rotation engages motor imagery processes, because
the subject imagines their hand rotating for a position. This
protocol is often used when the goal is to identify hand lat-
erality presented on a screen, that can be called Hand Lat-
erality Judment Task (HLJT) [9]. Osuagwu et al (2017) re-
ported a classification performance of 83± 3% for implicit
motor imagery of the left and right hand, whilst for explicitly
stimulated motor imagery the performance was 81±8% [10],
showing the possibility to use implicit motor imagery for BCI
application, until little described in the literature.

In the present study, a method to extract ERD/ERS val-
ues during HLJT was implemented. The research investigated
how the task influence the oscillatory activity in SMR of
the subjects performing a rehabilitation electronic game, de-
scribed in the pioneer work [11], and called Alice in Land of
the Hand, or only ALICE game.

II. METHODOLOGY

A. Participants

To perform ALICE game, twenty-three subjects partici-
pated (age: 25.65± 3.88 years), identified as S1,S2, ...,S23.
According to Edinburgh Lateral Dominance Inventory, 95%
of the subjects were right-handed. One of the participants de-
clared mixed preference. According to Mini-Mental State Ex-
amination (MMSE) all participants had no cognitive impair-
ment. Furthermore, all subjects had no medical or neurolog-
ical disorders and they hand-signed the Free and Informed
Consent to participate of the experiment. The project was ap-



proved by the Ethics Committee of the University Hospital
Onofre Lopes (HUOL/UFRN), released with CAAE number
(Brazil Platform): 34478214.0.0000.5292 and appreciation
number: 821294. We prejudged the subject’s performance
and in this step, the data from the S5, S17, and S20 subjects
were eliminated. S5 closed their eyes as a technique to re-
sponse, increasing the amplitude of the alpha band. S17 was
eliminated due to be left-handed and, in the research context,
the hemisphere dominance difference is not a desirable fea-
ture. S20 failed in 104 trials of the 288 trials. Thus, the data
from 20 subjects were used in the present work.

B. Experimental Paradigm

The game was development in collaboration between
Brain Institute and the Department of Informatic and Ap-
plied Mathematics (DIMAP), both of the Federal University
of Rio Grande do Norte (UFRN) [11], and the game was pro-
grammed in C language with the XNA Microsoft framework.

In the game world, a robot from the ALICE family dis-
putes with an enemy robot on an electronic board game set-
ting, and to take advantage over it, the participants should
answer correctly the hand laterality that appears above the
ALICE robot, inside circles. To perform the game, the sub-
jects were seated on a comfortable chair, located 50 cm away
from a monitor (Figure 1). Then, they were asked to ana-
lyze and judge if the hand presented on the screen was left
or right (HLJT) and then, press down the respective pedal
(left or right) using their respective foot (left or right). The fi-
nal score for each trial was based on reaction time (RT), i.e.,
the time from the stimulus shown on screen until the subject
pressed down the pedal. The main goal was to be accurate
with the shortest RT.

Fig. 1: Environment setting to perform ALICE game.

The hand presented have four features: laterality (left
and right), orientation (0◦,60◦,120◦,180◦,240◦,300◦), view

(back-view and palm-view), and posture (extension and flex-
ion), in which the flexion posture was presented in three dif-
ferent conditions. These features are shown in Figure 2 (A).
So, there were 96 types of stimuli: left/right (2) × view (4)
× orientation (6) × posture (2), but in this work, only tri-
als with hand in back and palm-view were selected. The ori-
entations 0◦,60◦,120◦ are classified as comfortable, due to
being biomechanically easy to execute, and the orientations
180◦,240◦,300◦ are labeled as uncomfortable, being difficult
to perform [12]. In total, 288 trials were performed by the par-
ticipants, divided into three blocks. As seen in Figure 2(B),
the trial begins with a cross on the screen. 1500ms later, the
image of the hand is shown and stays on the monitor until the
subject responds. Next, the robot gives the feedback with a
score based on RT. This feedback remains for 1000ms and it
is the final part of the trial.

C. EEG signal acquisition and Preprocessing

The EEG signals were recorded at a sample rate of 1000
Hz with 64-channel ActiCapTM (Brain Products GmbH, Mu-
nich, Germany) and using the Vision Recorder (Version
1.20.0506, Brain Products GmbH, Munich, Germany). All
electrodes were referenced to FCz, with impedance less
than 10kΩ and after EEG recording, the signals were re-
referenced to the average of the left (TP9) and right (TP10)
mastoids. Ocular artifacts were removed using the automated
correction method of EOG based on regression analysis, us-
ing the BIOSIG toolbox [13], and three electrooculogram
(EOG) electrodes were placed. The EEG data were digi-
tally filtered with a 0.5-40 Hz band-pass FIR (Finite Im-
pulse Response) filter and signal amplitude values exceeding
±100µV were automatically detected and rejected. The pre-
processed EEG data were segmented into epochs defined in
[−500ms,1500ms], i.e., 500ms pre-stimulus and 1500ms af-
ter the visual stimulus, that is the average of the RT for all
subjects. The 500ms pre-stimulus, of each trial, was used as
baseline period, to compare the power changes after the vi-
sual stimulus.

D. ERD/ERS Estimation

To quantify the synchronization levels in alpha and beta
bands, in decibel (dB), the following equation was used in
each trial:

ERD/ERS = 10× log10

(
|F( f , t)|2

|F̄( f , t)baseline|2)

)
(1)

where |F( f , t)|2 is the power extracted after the visual stim-
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Fig. 2: A. Features of the stimulus. B. The experimental design of the game, involving the HLJT.

ulus and immediately before the act of press down on the
response pedal, and |F̄( f , t)baseline|2 is the power during the
rest interval (baseline period) [3]. The Welch’s method [14]
was used to estimate the periodogram, i.e., the power spectral
density (PSD) [3].

To implement the method, the epoch [−500ms,1500ms]
was segmented using a rectangular window with length of
N = 500 samples and step of 250 samples. The segment of
N samples was divided in L = 250 parts, with D = 125 over-
lapping samples, following the Welch’s method, and result-
ing in xk (l) = x(l +(K −1)D), where l = 0,1, ...,L−1. So,
we have k = 1,2, ...,K segments, i.e., x1(l), x2(l), ...,xK (l).
For each k = 1,2, ...,K segment, the Fast Fourier Transform
(FFT) Ak (n) was extracted, with the signal windowed by
Hanning function [15, 16]. Then, the modified periodogram
given by:

Ik ( fn) =
L
U

|Ak (n)|2 (2)

is estimated for each segment, where fn = n/L and U is the
window normalization factor, given by

U =
1
L

L−1

∑
l=0

w2 (l) (3)

where w(l) is the Hanning window. As result, we have K
modified periodograms Ik ( fn). Thus, a mean is calculated
among these periodograms, resulting in

P̂k ( fn) =
1
K

K

∑
k=1

Ik ( fn) (4)

i.e., the mean modified periodogram.

Trials with incorrect response, with hand movement detec-
tion during the RT [17, 18], without markers, with RT greater
than 3500ms or smaller than 500ms [19], or EEG signal am-
plitude saturation (±100µV ) were automatically removed.

E. Region of Interest

The ERD/ERS patterns were analyzed in nine different
regions: Full-montage, Reduced-montage, Simplified-areas,
Frontal, Fronto-central, Central, Centro-parietal, Parietal and
Occipital (see Board 1 and Figure 3). The goal was to inves-
tigate the activity of each brain region during the HLJT and
the synchronization pattern.

Board 1: Regions of Interest and EEG channels selection.

Region EEG channels
Full-montage 62 channels

Reduced-montage 32 channels
Simplified-areas F3, F4, FC3, FC4, C3, C4, CP3, CP4

P3, P4, PO3, and PO4
Frontal F1, F2, F3, F4, F5, and F6

Fronto-central FC1, FC2, FC3, FC4, FC5, and FC6
Central C1, C2, C3, C4, C5 and C6

Centro-parietal CP1, CP2, CP3, CP4, CP5, and CP6
Parietal P1, P2, P3, P4, P5, and P6

Occipital PO3, PO4, PO7, PO8, O1, and O2
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F. Statistical Analysis

Two statistic steps were performed, in order to confirm the
main region(s) involved during the HLJT. In the first step,
the main factors were HEMISPHERE (Left and Right), RE-
GION (Frontal, Fronto-central, Central, Centro-parietal, Pari-
etal, and Occipital), and FREQUENCY (alpha and beta), with
the dependent variable being the mean ERSP. After the first
step and following the results, the second analysis was per-
formed including the hand features (LATERALITY, VIEW,
ORIENTATION, POSTURE) and the average values of the
ERSP, in order to analyze the influence of the features on
ERD/ERS values. To perform the statistic, the Generalized
Estimating Equation (GEE) method was used [20, 21] and
the significance level is p = 0.05.

III. RESULTS

The ERD/ERS resulty curves, in dB, are shown in Figure
4, for alpha and beta bands, respectively, including the fea-
tures of the stimuli (orientation, view and posture), for each
region of analysis (Board 1). The synchronization changes
are more evident in alpha frequency than in beta frequency.
An increase in alpha band is detected during the first 500ms
after the visual stimulus (see Figure 5), following by an ac-
centuated desynchronization, more evident in the alpha band
and in parietal and occipital lobes, that include the central,
parietal, and occipital regions, but also in frontal region. The
ERD/ERS distribution during the HLJT, differently in ex-
plicit motor imagery, has a distributuion more uniform over
the cortex, mainly over parietal and occipital lobes. Also, we
can see in Figure 5 that the desynchronization is present in
both bands.

The first statistical analysis showed significant main effect

of REGION (χ2 (5) = 562.497; p < 0.001), with the Centro-
parietal and Parietal regions obtaining the largest mean ERD:
−1.80dB and −1.78dB, respectively. These regions did not
show any significant differences between them. The inter-
action HEMISPHERE × REGION and REGION × FRE-
QUENCY were significant, but without differences of hemi-
sphere and frequency to the same region. So, the factors
HEMISPHERE and FREQUENCY were considered for the
step.

In the second statistical analysis, there were no signif-
icant main effects on the HEMISPHERE, FREQUENCY,
LATERALITY, VIEW, POSTURE, and ORIENTATION fac-
tors. But, there was significant main effect of HEMISPHERE
× LATERALITY (χ2 (3) = 7.501; p = 0.05) interaction, in
which the right-hand judgment generated a higher ERD in
the left hemisphere (mean −2.02dB) than in the right hemi-
sphere (mean −1.72dB).

IV. DISCUSSION

In the present work, we implemented a method to extract
ERD/ERS patterns during the Hand Laterality Judgment Task
- HLJT, that engages motor imagery processes [9]. The EEG
data from 20 subjects was used. The results showed largest
changes in the alpha band than in the eta band, as also re-
ported by Chen et al (2013). The increase in alpha rhythm
during the first 500ms of the reaction time is due to the visual
stimulation, that enhances the activity over the posterior cor-
tex. Also, the hand mental rotation is able to generate an ac-
tivation over the post-central gyros (M1 region), superior and
inferior parietal lobes, and in the primary visual cortex (oc-
cipital lobe) [22]. The synchronization of the frontal cortex is
related to the attention so requested during the game perfor-
mance [23]. Furthermore, during the implicit motor imagery,
the distribution of the ERD over the cortex is lower lateral-
ized than in explicit motor imagery [2] and besides, is more
uniformly distributed over the parietal and occipital regions.
The Hand Laterality Judgment Task it is not an easy activ-
ity to perform, due to be a multifaceted task, due to involves
skills as visual codification, mental rotate capability, judge
and also the attention [24].

V. CONCLUSION

This paper implemented a method to extract the ERD/ERS
patterns during the Hand Laterality Judgment Task, used by
a rehabilitation gaming system. This task engages motor im-
agery processes in an implicit way since the stimulus is part
of the body. The method proposed includes Welch’s method
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Fig. 4: Average of the alpha and beta synchronization patterns over trials and subject means, for each region of analysis and features of the stimulus.

using the Hanning window with a sliding approach. The re-
sults showed the synchronization levels in SMR, predomi-
nantly in the alpha band, and uniform distribution over the
left and right hemispheres, in the centro-parietal and parietal
brain regions. The method used to extract ERD/ERS and the
experimental design can be used for BCI system.
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Uğurbil Kamil, Georgopoulos Apostolos P. Mental rotation studied by
functional magnetic resonance imaging at high field (4 Tesla): Per-
formance and cortical activation Journal of Cognitive Neuroscience.
1997;9:419–432.

Author: Shirley Karolina da Silva Ferreira
Institute: Instute of Technology (ITEC)
Street: R. Augusto Côrrea
City: Belém
Country: Brazil
Email: shirley.ferreira@itec.ufpa.br


