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Summary
This work presents a multivariable predictive controller applied on a redun-
dant robotic manipulator with three degrees of freedom. The article focuses on
the design of a discrete model-based predictive controller (DMPC) using the
Laguerre function as a control effort weighting method to enhance the solution
of Hildreth’s quadratic programming and to minimize the trade-off problem in
constrained case. The Laguerre functions are used to simplify and enhance the
control horizon effect through parsimonious control trajectory, thus reducing
the computational load required to find the optimal control solution. Further-
more, these results can be confirmed by simulations and experimental tests on
the manipulator and comparing it to the traditional DMPC approach and the
discrete linear quadratic regulator.
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1 INTRODUCTION

In last years, the industrial automation has been used in many strategies to improve the production levels. The main
strategies are the use of robotic arm-manipulators in industrial processes for applications in painting, welding, picking,
handling, cleaning, and palletizing.1 Today, automation systems and robotic arms are making tasks that were considered
impossible 10 years ago, possible and common.2 However, due to robotic manipulators nonlinear dynamics, the use of
classic controllers, such as the proportional-integral-derivative (PID) controller, to solve extremely complex tasks, cannot
be as efficient as state-of-the-art control techniques can.

In recent years, the traditional PID controller is gradually being changed by advanced control techniques, such as
discrete model-based predictive controller (DMPC), capable of dealing with nonlinear multivariable systems more effi-
ciently. This means that applications with the DMPC have increased in the industry in the last years. It is because the
DMPC improves the closed-loop performance for multivariable systems with minimum control effort. Although, some
industries still prefer to use the PID controller rather than predictive control due to the latter complex implementation
and hard understanding.3

Even though the algorithm complexity and computational load limit the widespread of predictive controllers, imple-
mentations using advanced control techniques are increasing in the industrial control systems, for example: hybrid fuzzy
DMPC,4 hybrid DMPC based on genetic algorithms,5 DMPC probabilistic neural network.6 These are gaining space in
industrial processes where there is the need of constrained control effort, in which DMPC can give a strong advantage due
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to the fact that its optimization procedure can be modified in order to handle constraints, ensuring the desired closed-loop
performance subjected to the plant physical limitations.

Beyond the use of DMPCs in applications with slow dynamic systems, its use has also increased in the field of rapid
sampling frequency control-loops, such as in power electronics,7 and aerospace systems,8 such that the need for long
prediction horizons in MPC methods might be required since the transitory dynamic comprises dozens, hundreds, or
even thousands of samples to describe the complete transitory behavior.

The classical DMPC approach is not computationally efficient for large prediction horizons and can lead to poorly
numerically conditioned solutions and heavy computational effort when implemented online, in the case of fast sampling
frequency control-loops. It is because the traditional approach uses the forward shift operator for the representation of
the control trajectory.9 Then, it would be interesting to have a predictive control technique where it is not needed a high
computational cost, especially when applied in the constrained control energy cases. It can be achieved through Laguerre
networks applied in Hildreth’s quadratic programming solution method used to solve the constrained optimization
problem.

As is well-known, reducing the computational effort in MPC is an established area of research. There are several
ways to reduce the complexity and thus the computational burden in model predictive control. The methods that can be
highlighted are move blocking,10,11 warm-starting in interior-point method,12,13 active-set approach,14,15 and fast gradient
method.16 In addition, the Laguerre function also has potential benefits to achieve low computational loads with good
feasibility and good performance in MPC design.17,18 It is because of its orthogonal property, making it an universal
approximator which results in a parsimonious representation of the control trajectory.19

The purpose of this article is to use the Laguerre function within the DMPC design, achieving a control design called
Laguerre DMPC or LDMPC. The aim is to control the angular position for each robotic arm joint with constrained control,
lowering the computational cost and keeping a better trade-off between the control effort and closed-loop performance,
in comparison with traditional DMPC. It is possible because the Laguerre function is an orthonormal function used to
improve the horizon effect on the future control sequence. In other words, the set of Laguerre functions are used to capture
the future control trajectory with a small number of parameters. Then, it can reduce the computational load when a large
control horizon is needed.18

The article describes the DMPC design using Laguerre function applied to an arm-manipulator with three degrees
of freedom (3-DOF). Experimental and simulation results are shown based on a test of angular position control of each
joint of the manipulator. The results are compared with other classical discrete model-based predictive control (CDMPC)
with receding horizon control, for both the constrained and unconstrained cases. Moreover, for unconstrained case, the
LDMPC and CDMPC are benchmarked against the discrete linear quadratic regulator (DLQR).

Undoubtedly, the main contribution of the work is in the application side, because the LDMPC uses a multivariate
approach to control a robot arm through a simple Arduino-based interface hardware, showing that the method presented
can be applied in real systems with multiple inputs and multiple outputs (MIMO). Furthermore, articles with similar
experimental results using LDMPC and a robot arm-manipulator, to the best of authors’ knowledge, was not found in the
control systems literature. The article with the nearest results was found in Reference 20, however, this work present a
robot arm with only 2-DOF.

Beyond this introductory part, the article is organized as it follows: in Section 2, Laguerre function in DMPC design
is presented; in Section 3, constrained control in DMPC design using Laguerre function is shown; in Section 4, the arm
robot manipulator characteristics, experimental and simulation results of the control system are presented. In addition,
the closed-loop stability analysis is described; conclusions and future works are shown in Section 5.

2 LAGUERRE DMPC DESIGN

Initially, in dynamic systems theory, the Laguerre orthogonal functions have been used for system identification, because
these functions could improve the numerical accuracy of the corresponding linear regression estimation problem.21-24

Furthermore, a Laguerre model is produced by the discrete-time impulse response of a dynamic system and the same
discrete-time impulse response that leads to the LDMPC design using Laguerre functions as shown by Reference 25.

In the literature of predictive control design, a set of Laguerre function is used to express the future incremental control
trajectory through an orthonormal expansion. Moreover, there exist other types of orthonormal functions that have been
used to capture the control trajectory, where can be mentioned the Kautz functions26,27 and the Legendre functions.28,29

However, the Laguerre functions can be better than the other mentioned approaches because the set of Laguerre functions
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form a group of candidate functions with appropriate orders and with an increase in the number of its terms, such that
the orthonormal expansion may have a better chance converging to the underlying optimal control trajectory.25

The main goal in the design of DMPC is to optimize the future trajectory of a given system based on its dynamic
model. In this article, this design model is in the state-space form because it is considered to be more effective for handling
multivariable plants than the transfer function form.9

The nominal design model must be controllable and observable. Considering a system without dead times, described
in the backward shift operator domain z−1 (ie, F(z)z−1:= f (k− 1)), its state-space model is given by

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k), (1)

where u(k), y(k), x(k), are the vectors of q-inputs, q-outputs, and n1 state variables, respectively.
To eliminate steady state errors, it is necessary to embed integrators into (1) in order to work with the control increment

Δu(k) = u(k) − u(k − 1). By multiplying Equation (1) byΔ = (1 − z−1) and rewriting it in the augmented state vector form,
xa(k) =

[
Δx(k) y(k)

]T , the following augmented state-space model, for the regulatory control case, is given by:

xa(k+1)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

Δx(k + 1)
y(k + 1)

]
=

Aa
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

A 0m
T

CA Iq×q

] xa(k)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

Δx(k)
y(k)

]

+

Ba
⏞⏞⏞⏞⏞[

B
CB

]
Δu(k)

y(k) =

Ca
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

0m Iq×q

]
xa(k)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
Δx(k)
y(k)

]
, (2)

where Iq× q is identity matrices, 0m is a zero matrix with dimensions q×n1 and Aa,Ba,Ca, are the augmented model
state-space matrices.25

For the servo control problem, that is, for the reference tracking case, the augmented state vector changes to xa(k) =[
Δx(k) e(k)

]T , where e(k) is the vector of reference tracking errors. However, it is important to remark that when e(k) is
included, the augmented design model is no longer observable and this state must be forced into xa(k).

In Reference 21, the z-transform of the discrete-time Laguerre polynomials are defined as follows:

Γ1(z) =
√
(1 − a2)

1 − az−1

Γ2(z) =
√
(1 − a2)

(1 − az−1)
z−1 − a

(1 − az−1)
⋮

ΓN(z) =
√
(1 − a2) (z

−1 − a)N−1

(1 − az−1)N . (3)

The parameters a and N shown in (3) can be chosen separately for each input signal in MIMO case systems, where a is
the discrete pole of the Laguerre function, called scaling factor in the literature, that can be selected by the user and need
to be in the range of 0≤ a < 1 to guarantee the stability of the system. Generally, a is chosen as an estimate of the real part
(absolute value) of the closed-loop dominant eigenvalue, where a large value for a and a small number of N, correspond
to an incremental control with a slow decay rate.25 N is the order of the Laguerre network and it is used to capture the
control signal. When N increases, the degrees of freedom regarding the control trajectory also increases.9 The parameter
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N has a similar role as the control horizon (Nc) in the DMPC, with N =Nc when a= 0.25 However, the advantage is to use
a nonzero a and to work with N ≤Nc in the LDMPC design.

l N (k) is the inverse z-transform of (3), given by:

lN(k) = −1{ΓN(z)}. (4)

Then, the discrete-time Laguerre function can be rewritten in a vector form, for i= 1, … , q inputs, as it follows:

Li(k) =
[

l1(k) l2(k) … lN(k)
]T
, (5)

L(k)T =
[

L1(k) L2(k) … Li(k)
]
. (6)

The initial condition of (5) can be obtained from Reference 9

Li(0)T =
√
𝛽
[
1 −a a2 … (−1)N−1aN−1

]
, (7)

where 𝛽 = (1 − a2).

Their orthonormality can be expressed by
∞∑

k=0
li(k)lj(k) = 0 for i≠ j, and

∞∑
k=0

li(k)lj(k) = 1 for i= j. It will be used in

LDMPC design.
According to Reference 9, Li(k) can also be solved recursively by

Li(k) = Ali Li(k − 1), (8)

where Ali is a Toeplitz matrix with dimensions N ×N and it is a function of a and 𝛽 parameters. This matrix is given by
Reference 9:

Ali =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 … 0
𝛽 a 0 0 … 0

−a𝛽 𝛽 a 0 … 0
a2𝛽 −a𝛽 𝛽 a … 0
⋮ ⋮ ⋮ ⋱ ⋱ 0

(−1)N−2aN−2𝛽 (−1)N−3aN−3𝛽 … … 𝛽 a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The LDMPC design uses a set of Laguerre functions, l1(m),l2(m), … , lN(m), to represent the future control trajectory,
Δu(ki),Δu(ki + 1), … ,Δu(ki + m), for each sample instant k, where ki is the initial time of the moving horizon window,
while m is an arbitrary future sample instant. This strategy of control using orthonormal functions can be used to express
the control increment signal,

Δu(ki + m|ki) =
N∑

j=1
pj(ki)lj(m) = Li(m)T𝜂, (10)

where in the SISO case, 𝜂 is the parameter vector with dimension 1×N,

𝜂 =
[

p1 p2 … pN

]T
, (11)
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pj,j= 1,2, … , N, are the coefficients, and they are functions of initial time of the moving horizon window, ki. Extend to
MIMO case, 𝜂 is represented by,

𝜂T =
[
𝜂1

T 𝜂2
T … 𝜂i

T
]

(12)

with dimensions 1×Nsum, Nsum =N1 + … +Ni, i= 1, … , q inputs, where each input signal is designated to have an
independent 𝜂i. The coefficient vector 𝜂 will be optimized and calculated in design through the minimization of cost
function (13).

The cost function of the LDMPC is based on the minimization of the error between the set-point signal and the output
signal,25 where the objective is to find the vector 𝜂 that minimizes the cost function

J = 𝜂TΩ𝜂 + 2𝜂TΨxa(k) +
Np∑

m=1
xa(k)T(AT

a )mQAm
a xa(k). (13)

The matrices Ω and Ψ are, respectively,

Ω =
Np∑

m=1
Sc(m)TQSc(m) + RL, (14)

Ψ =
Np∑

m=1
Sc(m)TQAm

a . (15)

The matrix Sc(m), m= 1, … , Np, is the convolution sum to compute the prediction of the system shown in (2) with respect
to the output prediction horizon Np, weighted by the Laguerre network and given by Reference 9

Sc(m) =
m−1∑
j=0

Am−j−1
a BaL(j)T . (16)

The solution for the convolution sum can be obtained through linear algebraic equation or recursively by

Sc(m) = Aa
m−1S(m − 1) +

[
B1L1(m − 1)T B2L2(m − 1)T … BiLi(m − 1)T

]
. (17)

Observe in (17) that the Ba matrix was divided into the form

Ba =
[

B1 B2 … Bi

]
(18)

to represent each column of the matrix Ba and for m= 2,3,4, … ,Np, Sc(1)=BaL(0)T , using the relation Li(m) = Ali Li(m −
1) with the initial condition L(0)T as given in (7).

In (14), RL =RI is a N ×N diagonal matrix and R is a scalar acting as a control effort weighting factor to tune the
closed-loop response speed. The lower the value of R, less weight is put on the control, consequently leading to a faster
closed-loop response. Furthermore, the matrix Q = Ca

TCa is used for the purpose of minimizing the reference tracking
errors.

The minimization of the cost function in (13) is done by taking its partial derivative to find the optimal solution for
the control vector 𝜂, without constraints, resulting in Reference 25

𝜂 = −Ω−1Ψxa(k). (19)

Finally, static Laguerre terms are included in (19) and this last equation is rewritten based on the augmented design
model input, which is the optimal control increment (without constraints), say it the receding horizon control law,
given by:

Δu(k) = −Kmpcxa(k). (20)
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The contribution of the Laguerre terms in the controller gain, Kmpc, is defined by Reference 25:

Kmpc =

LMat
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡⎢⎢⎢⎢⎢⎣

L1(0)T 𝜎2
T … 𝜎i

T

𝜎1
T L2(0)T … 𝜎i

T

⋮ ⋮ ⋱ ⋮

𝜎1
T 𝜎2

T … Li(0)T

⎤⎥⎥⎥⎥⎥⎦
Ω−1Ψ (21)

𝜎i
T elements are all zero row vectors with dimensions equal to Ni, i= 1, … , q inputs, and xa(k) =

[
Δx(k) e(k)

]T . Where,
e(k)= y(k)− yr(k), and yr(k) is the set-point.

The Kmpc gain can be rewritten and divided into two parts,

Kmpc =
[

Kx Ke

]
(22)

being Kx the gain for state (Δx(k)) feedback and Ke is the gain for the error state feedback. Then, the closed-loop of LDMPC
is given by, [

Δx(k + 1)
y(k + 1)

]
= (Aa − BaKmpc)

[
Δx(k)
y(k)

]
+ BaKeyr(k),

y(k) = Ca

[
Δx(k)
y(k)

]
. (23)

Furthermore, to help understand the project of LDMPC, the flow chart and block diagram are shown in Figures 1 and 2,
respectively.

3 CONSTRAINED CONTROL IN LDMPC DESIGN USING LAGUERRE
FUNCTION

The constraints on the amplitude of the control variable are solved through a quadratic programming method. This
method uses the Laguerre functions in order to have the flexibility to define constraints on future control trajectories. It
decreases the number of constraints solved online within the prediction horizon and reduces the computational load for
high-order systems with long-range predictions.25

The constraints are articulated as linear inequalities and are combined with the cost function

J = 1
2
𝜂TΩ𝜂 + (Ψxa(k))T𝜂, (24)

used in the predictive control design. The optimization procedure is to minimize J using quadratic programming to find
an optimal predictive control and next, find the constrained minimum of a positive definite quadratic function subject to
linear inequality constraints, expressed by Reference 25:

M
⏞⏞⏞⏞⏞⎡⎢⎢⎢⎢⎢⎣

MΔU

−MΔU

MU

−MU

⎤⎥⎥⎥⎥⎥⎦
𝜂 ≤

𝛾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡⎢⎢⎢⎢⎢⎣

VΔUmax

−VΔUmin

VUmax

−VUmin

⎤⎥⎥⎥⎥⎥⎦
. (25)
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F I G U R E 1 Flow chart of LDMPC unconstrained. LDMPC, Laguerre
DMPC

F I G U R E 2 Block diagram of LDMPC unconstrained. LDMPC, Laguerre DMPC
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The constraints limits can be chosen for each input separately, where the upper limits on the amplitude of the control
increment and control, respectively, are given by

VΔUmax =
⎡⎢⎢⎢⎣

ΔUmax
1

⋮

ΔUmax
Nsum

⎤⎥⎥⎥⎦ , (26)

VUmax =
⎡⎢⎢⎢⎣

(Umax − Uk−1)1

⋮

(Umax − Uk−1)Nsum

⎤⎥⎥⎥⎦ (27)

and similarly, the lower limits are

VΔUmin =
⎡⎢⎢⎢⎣

ΔUmin
1

⋮

ΔUmin
Nsum

⎤⎥⎥⎥⎦ , (28)

VUmin =
⎡⎢⎢⎢⎣

(Umin − Uk−1)1

⋮

(Umin − Uk−1)Nsum

⎤⎥⎥⎥⎦ (29)

and Uk−1 =
[
u1(k − 1) u2(k − 1) … uq(k − 1)

]T is the vector containing the previous u value for each
input, ΔUmin =

[
Δu1

min Δu2
min … Δuq

min ]T , Umin =
[
u1

min u2
min … uq

min ]T , and ΔUmax =[
Δu1

max Δu2
max … Δuq

max ]T , Umax =
[
u1

max u2
max … uq

max ]T are the minimum and maximum values for
each input, respectively. MΔU and MU are the matrices reflecting the constraints of the control increment and control
signal, respectively. It can be calculated by

MΔU =

⎡⎢⎢⎢⎢⎢⎣

D(1)
D(2)
⋮

D(Nsum)

⎤⎥⎥⎥⎥⎥⎦
, (30)

MU =

⎡⎢⎢⎢⎢⎢⎣

D(1)
D(1) + D(2)

⋮

D(Nsum − 1) + D(Nsum)

⎤⎥⎥⎥⎥⎥⎦
, (31)

where D(k), k= 1,2, … ,Nsum, is the block matrix composed of Laguerre functions concerning each input given by:

D(k) =

⎡⎢⎢⎢⎢⎢⎣

(Al1
k−1L1(0))T 𝜎2

T … 𝜎i
T

𝜎1
T (Al2

k−1L2(0))T … 𝜎i
T

⋮ ⋮ ⋱ ⋮

𝜎1
T 𝜎2

T … (Ali
k−1Li(0))T

⎤⎥⎥⎥⎥⎥⎦
. (32)



PINHEIRO and SILVEIRA 9

As stated before, 𝜎i
T (i= 1, … , q inputs) are all zero row vectors with dimensions Ni. The Nsum =N1 + … +Ni is the sum

equal to the Laguerre network order. Nsum is also the number of future samples for constraints to be imposed. It is used
to settle the prediction of the future control trajectory.

• Hildreth’s quadratic programming: it is the method used to solve the constrained optimization problem in this
article. It is because Hildreth’s algorithm is an efficient method for solving large systems of inequalities with sparse
matrices,30 and also it does not require any matrix inversion. This quadratic programming is used at each sampling time,
having obtained a vector 𝜆 ≥ 0 that is called dual variables in the optimization literature. The Hildreth’s algorithm, as
shown in Reference 25, is repeated in brief, as follows:

𝜆i
m+1 = max (0,wi

m+1), (33)

where,

wi
m+1 = − 1

hii

[
ki +

i−1∑
j=1

hij𝜆j
m+1 +

n∑
j=i+1

hij𝜆j
m

]
(34)

hij are the elements of the matrix H = MΩ−1MT and ki are the elements of the vector K = 𝛾 + MΩ−1Ψxa(k). Then, the
optimal solution to the parameter vector 𝜂restr that solve the inequality shown in (25), which is the constrained control
sequence, is defined as follows:

𝜂restr = −Ω−1(Ψxa(k) + MT𝜆). (35)

The receding horizon control law with constraints is given by:

Δu(k) =

Lmat
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡⎢⎢⎢⎢⎢⎣

L1(0)T 𝜎2
T … 𝜎i

T

𝜎1
T L2(0)T … 𝜎i

T

⋮ ⋮ ⋱ ⋮

𝜎1
T 𝜎2

T … Li(0)T

⎤⎥⎥⎥⎥⎥⎦
𝜂restr. (36)

For a better understanding, a flow chart of LDMPC constrained design using Hildreth’s quadratic programming is
shown in Figure 3.

4 LAGUERRE DMPC OF THE ARM-MANIPULATOR

This section describes the characteristics of the robotic arm used in this article and also the experimental and simulation
results obtained using the LDMPC design presented in Section 2 compared with another CDMPC with receding horizon
control. Furthermore in this Section, it is done the evaluation of the LDMPC control-loop robustness and stability analysis.

4.1 Robotic arm-manipulator description

The robotic arm used is a Mentor desktop robot, made by Feedback Instruments Limited and depicted in Figure 4. This
robot has 5-DOF, but within our tests, only 3-DOF were used. It has revolute joints, where each joint is driven by DC servo
motors with potentiometric angular sensors for precise positional control. The analog-to-digital and digital-to-analog
interface, however, is not the original from Feedback, but an Arduino-based interface hardware with a DAQ library for
Scilab/Xcos and Matlab/Simulink, known as LACOS DaqDuino v2, found at Mathworks FileExchange1.

1http://www.mathworks.com/matlabcentral/fileexchange/50784-daqduino

http://www.mathworks.com/matlabcentral/fileexchange/50784-daqduino
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F I G U R E 3 Flow chart of constrained LDMPC. LDMPC, Laguerre DMPC [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Photo and diagram of the arm-manipulator
Mentor, from Feedback [Colour figure can be viewed at
wileyonlinelibrary.com]

4.2 Experimental and simulation results

This experimental case study is to demonstrate that the Laguerre function can improve the trade-off between control
energy and closed-loop performance, and the future control trajectory optimization under the same control horizon
window, with respect to CDMPC. This case study brings significant results for both LDMPC cases, constrained and
unconstrained.

The MIMO system that represents the 3-DOF robotic arm was modeled using experimental data and Recursive Least
Squares estimation. The identified MIMO transfer function model is given by:

⎡⎢⎢⎢⎣
Y1(z)
Y2(z)
Y3(z)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
G11(z) G12(z) G13(z)
G21(z) G22(z) G23(z)
G31(z) G32(z) G33(z)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
U1(z)
U2(z)
U3(z)

⎤⎥⎥⎥⎦ , (37)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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where,

G11(z) =
0.0007272z + 0.003917

z2 − 1.604z + 0.6041
; G12(z) =

5.2074e − 9z + 3.4674e − 11
z2 − 0.28848z − 0.70734

;

G13(z) =
5.6358e − 09z + 5.5471e − 09

z2 − 0.5z − 0.5
; G21(z) =

1.1382e − 9z + 7.6199e − 12
z2 − 0.49889z − 0.498254

;

G22(z) =
0.0002373z + 0.005518
z2 − 1.5340z + 0.5340

; G33(z) =
0.002278z + 0.01048

z2 − 1.5393z + 0.5393
;

G13(z) = G23(z); G31(z) = G21(z);G12(z) = G32(z); (38)

. The sampling period of this system is 0.05 second, because the data acquisition device used with the arm-manipulator
Mentor process has an USB interface, which limits the maximum sample-and-hold frequency to 100 Hz. Since the max-
imum singular value, of the system shown in (37), has its cut-off frequency around 0.125 Hz, a sampling frequency of
20 Hz was selected, obeying the Shannon-Nyquist sampling theorem and coping with the sampling frequency used with
the robotic system shown in a similar work of Wang.20

4.2.1 Simulation results

In this first test, the joints of the Robot are actuated by a set-point for each motor. The set-point positions are 180◦ for
joint-1 (J1), 90◦ for joint-2 (J2), and 60◦ for joint-3 (J3). The prediction horizon and control horizon for CDMPC are, respec-
tively, Np = 100, Nc = 2. For the LDMPC, Np = 100 and the parameters for the Laguerre functions are N1 =N2 =N3 = 2
and a1 = a2 = a3 = 0.3. The weighting matrices are R1 =R2 =R3 = 0.008 and Q = Ca

TCa. This experiment is not in the con-
strained case and these controllers tuning parameters were selected by trial and error, whilst forcing the equivalence of
prediction horizons of CDMPC and LDMPC, granting a fair comparison between these two MPCs. This initial condition
values of tuning parameters were chosen as follows: Np should be incremented until no significant increase in the out-
put response performance is achieved. Nc and N need to be as small as possible, but both are increased until promotes an
internally stable controller. A small control horizon means fewer variables to compute in the quadratic problem solved at
each control interval, which promotes faster computations. Finally, a is the performance fine-tuning, where if a is close
to zero, a faster closed-loop response is produced, but if a is close to one, a slower closed-loop response is achieved.

Moreover, DLQR that is based on an infinite horizon, was benchmarked with CDMPC and LDMPC, using the same
R and Q matrices. It is shown to justify the effectiveness of the closed-loop performance of both MPC controllers in the
unconstrained simulation case.

Figures 5-7, are used to show the output signals, the control signals and the incremental control signals, respectively,
for the unconstrained simulation case. These results are discussed later in the text, along with performance indices data.

4.2.2 Experimental constrained results

In this second test, the LDMPC and CDMPC controllers are applied on the real Robot. The controllers parameters and
setpoints are the same as in the first simulation test, but in this case, the control signals are constrained. The constraints
used on these control signals are ΔUmax = 2.5, ΔUmin = −2.5 and Umax = 5, Umin = −5 for all inputs. For the CDMPC
design it was adopted a simple saturation control, and for the LDMPC design, it was adopted the Hildreth’s quadratic pro-
gramming, given in Section 3. The results for the joint positions, control signals and incremental signals, are respectively,
shown in Figures 8-10. This experimental results, along with the first simulated case results, are discussed next.

4.2.3 Simulation and experimental results analysis

The performance of the control-loops can be evaluated by a set of discrete versions of integral performance indices, based
on power or energy signals. The lower the value of indices, the better of performance of the closed-loop system. With
ni being the number of iterations of the tests, the control signals matrix, uni× 3, power, will be related to the index ISU =∑m

k=1u(k)2 associated to power control signal consumption; the reference tracking error matrix, eni× 3, power, will be
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F I G U R E 5 Unconstrained simulation
test: Joints positions

F I G U R E 6 Unconstrained simulation
test: Control signals

related to the integral of the squared error, ISE =
∑m

k=1e(k)2; the control difference matrix, 𝚫uni×3, power, namely, total
variation control, will be TVC =

∑m
k=1|Δu(k)|; and the percent overshoot will be referred to PO. The performance results

of CDMPC and LDMPC control-loops, with and without constraints, are presented in Tables 1 and 2, respectively.
Analyzing the results between the controllers performance, for the unconstrained simulation case, CDMPC and

LDMPC presented similar results under the same output and control prediction horizons (recall that in LDMPC Nc =N).
Observe Figures 5 to 7, to see that all three joints had a fast response with asymptotic convergence and with similar control
effort for the LDMPC case, which can be confirmed by the performance indices shown in Table 1, where LDMPC out-
performed CDMPC slightly for the majority of the indices, but losing in the TVC. The major contribution of the LDMPC
appears when dealing with the nonlinear system in the experimental test with constraints. Observe Figures 8 to 10, where
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F I G U R E 7 Unconstrained simulation
test: Control increment signals

F I G U R E 8 Constrained experimental test:
Joint positions

the LDMPC case response speed is still faster than the classical case, but now, its control signals are also more conserva-
tive, as can be seen at Figures 9 and 10, that despite the maximum control amplitudes had achieved similar values, the
time spent at those values where shorter for the LDMPC as can be confirmed by the indices shown in Table 2, where
LDMPC has lost only in the PO. These same results were also observed in the constrained simulation case, but not shown
in this article in order to present the experimental test and give the proof of concept instead, confirming that the algorithm
works on a real experiment.

In addition, the elapsed time to calculate the computation time in the unconstrained simulation environment was
measured with the tic-toc function from MATLAB® R2017a and for the computation of simulation using a desktop
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F I G U R E 9 Constrained experimental test:
Control signals

F I G U R E 10 Constrained
experimental test: Control increment signals

PC (with Microsoft Windows 10, 2.2 GHz Intel Core i7-3632QM, 8 GB RAM). The elapsed time, with period of 400
samples for LDMPC was ≈ 0.02 second, for CDMPC was ≈ 0.03 second, and for DLQR was ≈ 0.05 second. Thus,
this result can confirm that the Laguerre function can reduce the computational load of the algorithm. The Laguerre
polynomial-based approach can be very useful for adaptive MPC design, where the future optimal control trajectory
needs to be calculated for every sampling time. Similar results about controller computation time reduce can be found
in Reference 31.

Furthermore, for constrained case in real-time application, the elapsed time to each sampling period for LDMPC using
Hidreth’s quadratic programming was ≈ 0.0008 second, whereas the elapsed time for CDMPC using simple saturation
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T A B L E 1 Unconstrained performance results LDMPC DLQR

ISU Joint 1 244.05 263.88 280.11

Joint 2 137.94 149.91 154.63

Joint 3 44.52 39.98 48.19

ISE Joint 1 32.512 26.841 37.944

Joint 2 10.069 8.297 11.667

Joint 3 3.070 3.062 4.184

PO (%) Joint 1 0.2347 0.2567 5.5889

Joint 2 0.3026 1.3865 5.1515

Joint 3 0 0 5.7711

TVC Joint 1 107.41 158.03 89.99

Joint 2 58.34 88.37 48.90

Joint 3 46.08 35.51 23.87

Abbreviations: DLQR, discrete linear quadratic regulator; LDMPC,
Laguerre DMPC.

T A B L E 2 Constrained performance results CDMPC LDMPC

ISU Joint 1 4982.28 4906.13

Joint 2 3362.26 2906.77

Joint 3 8753.17 7684.17

ISE Joint 1 2.57e+06 2.55e+06

Joint 2 4.28e+05 3.79e+05

Joint 3 6.79e+04 6.46e+04

PO (%) Joint 1 0.71 0.72

Joint 2 0.63 0.64

Joint 3 4.50 2.75

TVC Joint 1 505.79 27.95

Joint 2 325.21 23.27

Joint 3 94.62 24.30

Abbreviations: CDMPC, classical discrete model-based
predictive control; LDMPC, Laguerre DMPC.

was ≈ 0.0007 second. In spite of CDMPC be a bit faster than LDMPC, due to the linear matrix inequality in Hildreth’s
algorithm that spend more time to provide a solution, the LDMPC increased the performance of closed-loop system
reasonably, justifying its use. It is important to emphasize that if LDMPC not been used to enhance the time solution
of Hildreth’s Quadratic, the elapsed time be much longer, especially regarding hardwares with low processing-capacity.
This feature is very important, especially in the real-time applications that the controller must calculate the control signal
solution within each sampling time.

These experimental results can confirm that the LDMPC, in the constrained case, enhance the control horizon
effect and can capture the system dynamics better under the same horizon window used in the classic approach,
hence, it improves the control-loop performance using less power. Moreover, the Laguerre function can reach a sat-
isfactory performance without long control horizon. By contrast to CDMPC where is necessary to increase Nc and
Np to achieve the same LDMPC’s performance. Consequently, this can increase the implied computational burden
dramatically.
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Therefore, the LDMPC controller using Hildreth’s quadratic programming with the constrained control signal pre-
sented the best results. Thus, it is possible to conclude that this algorithm is efficient for cases where constrained
control signal is required (which is almost every real control problem), bringing improvements in the trade-off between
closed-loop performance and control energy consumption. In addition, another contribution of Hildreth’s quadratic pro-
gramming is the dramatic reduction of variance incremental power control as can be confirmed by the TVC index shown
in Table 2.

4.3 Stability and robustness analysis

The stability evaluation of some predictive control algorithms are, for some cases, a bit controversial, since the predicted
states are sometimes simulated in real-time and are not within a Ny-order-compatible state space representation descrip-
tion. However, according to Reference 25, to evaluate the closed-loop stability of the CDMPC and the LDMPC it is only
needed to calculate the eigenvalues of the closed-loop matrix (Aa −BaKmpc), where Kmpc = LMatΩ−1Ψ shown in (21).

Thus, stability and robustness analysis of CDMPC and LDMPC can be performed based on traditional methods from
the modern control theory, leaving no doubts regarding the asymptotic stability of the closed-loop system and also granting
the use of well-established state space methods. As an example, in Figure 11 it is shown the pole map of CDMPC and
LDMPC, in the unrestricted case, confirming the stability, by the poles locations, that were already seen in the previous
simulation tests presented. In addition, there is a pole at z ≈ 1 as can be seen in Figure 11, because the arm model shown
in (37) has a zero at z ≈ 1. Then, this closed-loop pole does not influence the dynamics of the system, and it can be
canceled-out.

Robustness analysis by traditional frequency response methods can also be used. Thus, design methods based on
the structured singular value 𝜇,32 that merges sensitivity and complementary sensitivity analysis and is readily available
in MATLAB® , can be used for robustness analysis of MIMO systems. In 𝜇-Analysis it is appropriate to represent the
uncertainties of the control system by the M − Δ plot, where M denotes the nominal control-loop system and Δ is the
structured uncertainty matrix.32

Using MATLAB’s robust control toolbox, the robustness analysis for the unrestricted CDMPC and LDMPC is investi-
gated. It was considered that the robotic system model has input multiplicative uncertainties. The system uncertainties,
for all inputs, consists of 10% error in the low-frequency range, increases to 100% at 35 rad/s, and reaches 1000% in
the high-frequency range, and for robust performance analysis the weighting transfer functions used to specify perfor-
mance requirements are: wp = 0.01

z+0.001
and wu = 0.05

z+0.005
. The summary of 𝜇-conditions for this robustness analysis example

is:robustperformance(RP) ⇔ ||M||𝜇 < 1 and robuststability(RS) ⇔ ||M11||𝜇 < 1. Proofs and further explanations for these
conditions are given in Reference 32 but within this work they are accepted as robustness requirements for the CDMPC
and LDMPC design.

F I G U R E 11 Closed-loop eigenvalues for unconstrained
case
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F I G U R E 12 Robust analysis for unconstrained case

F I G U R E 13 Robustness analysis for LDMPC constrained
case. LDMPC, Laguerre DMPC

In Figure 12 it is shown the 𝜇-plots of LDMPC and CDMPC for unconstrained case. Observe that for both cases,
RS and RP meet the robustness requirements. Therefore, the Laguerre controller can guarantee the robust stability
and robust performance in a similar way as the classic method can. In this example, using the unrestricted LDMPC,
this controller has achieved a 𝜇-plot that is laying on top of the CDMPC plot, since LDMPC was exploring a less con-
servative tuning (despite more conservative in terms of power consumption) as depicted by the performance indices
shown in Table 1. In spite of being on top, LDMPC still has guaranteed robustness in the sense of 𝜇-robustness
analysis, showing that the Laguerre function do not degrade, considerably, the robustness properties of the DMPC
control-loop.

In the constrained case using Hildreth’s quadratic programming, the robust analysis was done for each gain Kmpc =
−(LMat𝜂restr)

xa(k)
, which was calculated through 𝜂restr from Equation (35) for every k= 1, … , Endtime iteration of the simulation,

as shown in the flow chart in Figure 3. The results can be analyzed in Figure 13, where it is shown the 𝜇-curves of
LDMPC that has the peak values less than one for the whole set of gains, confirming that the constrained closed-loop
system achieves robust performance and robust stability to modeled uncertainties. In addition, in Figure 14 it is shown
the closed-loop eigenvalues for LDMPC constrained case, where all poles are inside the unit circle, ensuring the stability
of system when the control signal is constrained by Hildreth’s quadratic programming.
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F I G U R E 14 Closed-loop eigenvalues for LDMPC
constrained case. LDMPC, Laguerre DMPC

5 CONCLUSIONS

This article reviews a discrete-time predictive controller using Laguerre function applied to the problem of angular posi-
tion control of a MIMO robot arm-manipulator. The work contends for the potential benefits of the Laguerre’s function
within DMPC applied to MIMO systems control in the constrained and unconstrained cases, regarding input constraints.
In short, the disadvantage of the investigated control method, with respect to CDMPC, is the time spent to tune the system,
because it uses a set of Laguerre’s function tuning parameters for each input of the system.

The closed-loop performance of both MPC controllers were benchmarked with the DLQR, justifying the effective-
ness of the closed-loop performance of LDMPC. Furthermore, for unconstrained and constrained cases, the LDMPC still
keeping robustness and stability margins as is confirmed by 𝜇-curves and poles location, respectively.

This work also showed that the LDMPC algorithm can reduce the computational load and runs faster than CDMPC,
due to its orthogonal property, which results in a parsimonious future control trajectory with few parameters. Thus,
LDMPC does not require a large control horizon to reach a satisfactory control-loop performance. In essence, large Nc
can be obtained with a small number of N.

Despite the great number of tuning parameters in the LDMPC design, it is important to remark that it brings more
flexibility to the designer and opens up new solutions for the model-based predictive control area, with smaller control
and controlled variable variances and consequently less power consumption. Observe, for instance, in Tables 1 and 2, that
the power consumption, associated to the ISU index, was smaller for the LDMPC, whereas the tracking performance,
associated to the ISE index, was also smaller for the LDMPC. This means that LDMPC is solving the same problem more
efficiently and using less power to do so. Furthermore, the Hildreth’s quadratic programming can reduce the variance
incremental power control and ensure that constraint not is broken when the incremental control is constrained.

The increasing number of tuning parameters within new complex control algorithms such as LDMPC is a reality
that the academic and industrial fields must handle in some way in the near future. For example, CDMPC is already a
product available in the market and its three term tuning configuration, respective to the output horizon, control horizon
and energy weighting factor, for SISO loops, are becoming a new standard among technicians and engineers. It is also
remarkable that it has started in the decade of 1970 and is still undergoing a transition stage. As for the LDMPC, which is
just an augmentation of the classic case, our intention is now to investigate ways to correlate what is known by technicians
and engineers, for example, respective to PID tuning, to be encompassed into the Laguerre’s function procedure, in order
to make it hidden to the end-user but keeping its advantages in terms of smaller variances and increased performance.
This would benefit the automatic control marked with state-of-the-art predictive control algorithms, whilst keeping a
well-known front-end interface to the end-user.

At last, since the Laguerre network, associated with DMPC, has brought reduced variance results, a stochastic
Laguerre function version can be developed to solve stochastic problems, such as the approach within the Generalized
Predictive Control (GPC) area, based on stochastic process models. The study presented in this article gives substantial
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proof of concept that not only the computational load could be reduced, but also that a minimum variance cost is possible
against non Laguerre-based minimum variance algorithms such as the GPC.
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