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The contribution of this work is the numerical simulation and the experimental assessment of a network 
distributed control system using an unmanned aerial vehicle and a remote master controller connected 
by a wireless network. A novel multi-input multi-output long-range predictive horizon minimum 
variance control approach is developed and implemented in altitude, heading, lateral and longitudinal 
velocities control problems under the influence of process noise, measurement noise and time-delay. The 
proposed autopilots exhibited damped and fast response speeds with optimal control and output variance 
minimization, outperforming a classic model predictive control approach in convincing experimental field 
tests in real-world environments and scenarios.
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1. Introduction

In this work it is uniquely investigated the application of the 
generalized minimum variance in the state-space method (GMVSS) 
for multi-input multi-output system (MIMO) to design altitude-
hold, heading-hold, lateral and longitudinal speed-hold autopilots 
for a quadrotor, where the autopilot and the quadrotor are con-
nected over a wireless network and are assessed in experimental 
field tests in real-world environments.

This kind of distributed control system counts on embedded 
stability and control augmentation systems aboard the quadrotors, 
but the required maneuvers come from a remote guidance and 
navigation system [1–3]. In some of these applications the frame-
work is based on user multicast datagram protocol over wireless 
networks [4], configuring a stochastic scenario by means of possi-
ble network packet dropouts [5] together with control and sensor 
transmission latency and noise [6].

To overcome these problems, model predictive control (MPC) 
algorithms are gaining more space in the aerospace industry and 
academia [7]. Quadrotor autopilot design and real-time implemen-
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tation of such algorithms are coping with increased computational 
power of microprocessors and efficient programming of embedded 
control systems using certain design softwares, such as MATLAB®

and Simulink® with automatic code generation [8,9]. The ben-
efits of MPCs are being extended for compensators commonly 
designed for aerospace systems, such as lead, lag, proportional-
integral-derivative controllers using hybrid topologies to increase 
the accuracy of satellite-carrier boosters landing point, for turbo-
fan engine control, for satellite control, trajectory optimization and 
obstacle avoidance, and so on [10–14].

Despite this increase in MPC applied to aerospace systems, in 
most cases, the drawback is the computational burden and the al-
gorithms are still being investigated in theory and/or simulation. 
Even though, MPCs capable of dealing with stochastic Gaussian un-
certainties, noise and time delays, explicitly, will play a pivotal role 
in a number of aspects across aerospace engineering [7], and in 
this state of flux, quadrotors are becoming interesting test beds 
for MPC and other advanced control algorithms, since they allow 
the assessment of aerospace systems concepts in a simple and safe 
manner, such as in [15–20].

To the best of authors’ knowledge, the GMVSS is being pro-
posed and assessed for the first time as a MIMO control system 
design technique and in quadrotor flight control systems. It de-
rives from the minimum variance regulator proposed by Karl Johan 
Åström in 1970 [21] that culminated in two well-known industry-
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standard MPCs: generalized minimum variance control [22] and 
generalized predictive control (GPC) [23]. These are stochastic pre-
dictive control techniques since they explicitly account for the 
stochasticity of a controlled auto-regressive (integrated) moving 
average model (i.e., with colored noise). As predictive minimum 
variance control methods, they estimate future stochastic distur-
bances to counteract before they occur.

Despite the benefits regarding stochastic MPC, practitioners 
were lured by the strong potential of long-range prediction to in-
crease robustness and stability margins of control-loops [24], such 
that the stochastic approach in MPC design is not yet a common 
practice in industrial control systems and linear stochastic predic-
tive control methods are still open for investigation [25]. In the 
aerospace field, such control systems are in transit from simula-
tions [26] to implementations in experimental laboratory essays 
[9].

The GMVSS has been assessed previously in industrial process 
control, outperforming traditional predictive control methods in 
the linear [27] and non-linear [28] cases. Its major differences to 
classic MPC are: it is a non-receding-horizon control technique, 
uses only two tuning parameters and does not require the so-
lution of Diophantine equations as in generalized predictive con-
trol. The negative aspect, however, is the dependence of stochastic 
model estimation techniques such as state-space extended (re-
cursive) least-squares and Kalman filter or observer/Kalman filter 
identification methods in order to fully exploit optimal results in 
the minimum variance sense [21]. Such increased model complex-
ity, unfortunately, also increases the computational burden beyond 
classical stochastic MPCs, thus not providing any improvements to 
this problem.

Several advanced control methods, gaining more attention in 
quadrotor autopilot design, also have a strong dependence on esti-
mation techniques, such as artificial neural networks to aid sliding 
mode control [29,19,16]. However, they lack real flight experiments 
and a reshape to discrete-time systems, whilst in some cases, the 
control signals are not even shown or discussed [30], even though 
the problem with control signal chattering is well-known to be 
seen in such control approaches in the regulatory case.

Minimum variance control gained popularity after the seminal 
work of Åström and Wittenmark in 1973 on self-tuning regulators 
[31]. The minimum variance was achieved in the regulatory con-
trol case, despite an unfeasible control signal in practice, due to 
excessive chattering and unrealizable amplitudes. Such problems 
were solved after detuned cases appeared and in [27] it has been 
shown that GMVSS could recover the ideal theoretical result, by 
means of long-range prediction, with a physically realizable con-
trol signal.

All previous works regarding GMVSS control have reported ap-
plications to single-input, single-output (SISO) systems. Thus, it 
still lacks the mathematical development and the analysis in MIMO 
control system design and application for decentralized and cen-
tralized MIMO control syntheses.

The non-adaptive MIMO GMVSS control is proposed and as-
sessed in this present work for quadrotor altitude-hold, compass 
heading-hold and lateral/longitudinal speed-hold autopilots, in or-
der to optimally counteract to stochastic disturbances and achieve 
fast transitory response speeds with minimum variance control ef-
fort. Numerical simulations and experimental results are compared 
to an industrial-standard MPC technique.

Beyond this introductory part, this work is organized as follows: 
the GMVSS method for a class of MIMO systems is presented; the 
multi-input multi-output linear discrete-time model of the quadro-
tor in the state-space is derived; simulations and experimental 
results are presented and followed by the conclusions.
2. GMVSS design for MIMO systems

Consider the non-singular, controllable and observable MIMO 
linear discrete-time stochastic system model

x(k) = Ax(k − 1) + Bu(k − d) + �w(k − 1), (1)

y(k) = Cx(k) + v(k), (2)

where x(k) ∈ Rn is the vector of n state variables, u(k) ∈ Rnu is 
the vector of nu inputs, y(k) ∈Rny of ny = nu outputs, w(k) ∈ Rn

and v(k) ∈ Rny are Gaussian disturbance vectors with respec-
tively σ 2

w1
, . . . , σ 2

wn
and σ 2

v1
, . . . , σ 2

vny
variances. The A ∈Rn×n, B ∈

Rn×nu , C ∈ Rny×n, � ∈ Rn×n are the matrices of the system, d ≥ 1
is the discrete time-delay (including the zero-order-hold delay).

The GMVSS method consists in finding the control input u(k)

for the system in (1) to minimize the performance index

J = φ2(k + N y) (3)

based on the generalized output

φ(k + N y) = y(k + N y) − yr(k + N y) + �u(k), (4)

in which N y is the prediction horizon, � = diag(λ1, . . . , λnu ) is a 
diagonal matrix of energy weighting factors λi , i = 1, . . . , nu , for 
the u1(k), . . . , unu (k) inputs and yr(k) is a known vector of refer-
ences. Since x(k) and y(k) are vectors of random variables due to 
the random process noise w(k) and measurements noise v(k), re-
spectively, so is the cost in (3).

The formulation considered in this present work differs from 
[27] in the following aspects: it covers the MIMO case; the process 
noise is not the same as the measurement noise; the stochasticity 
of the minimum variance control is reviewed as it follows.

To define a control problem that does not depend on a partic-
ular initial condition of x(k) and y(k) or sequences w(k) and v(k), 
the expected performance index is used instead:

Jexp = E
[
φ2(k + N y)

]
, (5)

where E[.] denotes the mathematical expectation of the general-
ized output. To find u(k) that minimizes Jexp, φ(k + N y) must 
be exactly measurable at time k, which is not true since (1) is a 
stochastic system as shown as follows:

x(k) = Ax(k − 1) + Bu(k − d) + �w(k − 1)

x(k + 1) = Ax(k) + Bu(k − d + 1) + �w(k)

x(k + 2) = A2x(k) + ABu(k − d + 1) + A�w(k)

+ Bu(k − d + 2) + +�w(k + 1)

... (6)

x(k + N y) = AN y (k) +
N y∑
i=1

A(N y−i)Bu(k − d + i)

+
N y∑
i=1

A(N y−i)�w(k − 1 + i)

and the predicted output is y(k + N y) = Cx(k + N y) + v(k + N y), 
or in its expanded form

y(k + N y) = C AN y x(k) +
N y∑
i=1

C A(N y−i)Bu(k − d + i)

+
N y∑
i=1

C A(N y−i)�w(k − 1 + i) + v(k + N y).

(7)
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Since y(k + N y) cannot be determined exactly due to the un-
known future influence of both w(k) and v(k), their future effects 
are estimated by means of the following separation of present and 
future terms:

N y∑
i=1

C A(N y−i)�w(k − 1 + i) + v(k + N y) =

C A(N y−i)�w(k)︸ ︷︷ ︸
Present

+
N y∑
i=2

C A(N y−i)�w(k − 1 + i) + v(k + N y)

︸ ︷︷ ︸
Future

. (8)

By neglecting future disturbance terms, but applying the cor-
rection term w(k) = y(k) − C x̄(k), with x̄(k) the Kalman filter esti-
mated state, to predict the future state based on data available up 
to instant k, i.e. x̂(k + N y |k), the predicted state of the system is 
given by

x̂(k + N y|k) = (AN y − F C)x̄(k)

+
N y∑
i=1

A(N y−i)Bu(k − N y + i) + F y(k). (9)

This system is known as the minimum variance predictor of 
GMVSS, where

F = A(N y−1)L, (10)

in which L is the gain of the steady-state optimal Kalman filter 
estimator for the system (1), given by

x̄(k + 1) = (A − LC)x̄(k) + Bu(k − d + 1) + Ly(k). (11)

L can be solved offline, for the non-adaptive case, by iterating the 
estimator algebraic Riccati difference equation [32],

S(i + 1) = A S(i)AT

− A S(i)C T
(

C S(i)C T + R K F

)−1
C S(i)AT + Q K F . (12)

When i → ∞, starting with a high magnitude S(0), the steady-
state error covariance matrix S∞ is used to solve L, such that

L = A S∞C T
(

C S∞C T + R K F

)−1
. (13)

For the minimum variance case, the Kalman filter weighting 
matrices Q K F and R K F must cope with the system (1), which are 
based on the covariance matrices of w(k) and v(k), respectively 
Q = diag(σ 2

w1
, . . . , σ 2

wn
) and R = diag(σ 2

v1
, . . . , σ 2

vny
). The required 

weighting matrices are defined as in [32]:

Q K F = �Q �T , R K F = R. (14)

Using (9), the predicted output based on information known up 
to time k, i.e. ŷ(k + N y |k) = Cx̂(k + N y |k), is substituted into Jexp

so to obtain u(k) that minimizes the expected cost

Ĵ = φ̂2(k + N y|k), (15)

subjected to the stochastic system in (1).
The GMVSS control law for the MIMO case proposed in this 

paper is derived by solving ∂ Ĵ/∂u(k) = 0, which leads to the MIMO 
GMVSS control law:⎡
⎣ N y∑

i=1

C A(N y−i)Bq−(N y−i) + �

⎤
⎦ u(k)

= yr(k + N y) −
(

C AN y − C F C
)

x̄(k) − C F y(k), (16)
where q−1 is the backward shift operator.
For the MIMO design approach, the l.h.s. of (16) can be rewrit-

ten in a vector-matrix form as shown as it follows:

(C B + �)u(k) +
N y−1∑
i=1

C A(N y−i)Bq−(N y−i)u(k)

= (C B + �)u(k) +
[

C A(N y−1)Bu(k − N y + 1)

+ C A(N y−2)Bu(k − N y + 2) + · · ·
+ C A2 Bu(k − 2) + C ABu(k − 1)]

= (C B + �)u(k) +

⎡
⎢⎢⎢⎣

C AB
C A2 B

...

C A(N y−1)B

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

u(k − 1)

u(k − 2)
...

u(k − N y + 1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ũ

(17)

Since nu = ny , the GMVSS control design in the MIMO case will be 
feasible if and only if (C B + �) is invertible, such that

u(k) = (C B + �)−1
[

yr(k + N y) − Ũ

−(C AN y − C F C)x̄(k) − C F y(k)
]
. (18)

Analyzing the control law in (16), it is possible to observe that 
the computational burden will increase as N y is increased, since it 
will require N y +1 control input regressors (i.e., u(k −1), . . . , u(k −
N y + 1)).

2.1. System augmentation by integrator addition

In order to add integrators to the inputs of the system to try 
and track step-like reference signals for servo control, the system 
in (1) can be augmented in the following manner:[

y(k + 1)

�x(k + 1)

]
=

[
I C A
0 A

][
y(k)

�x(k)

]
+

[
C B
B

]
�u(k − d + 1)

+
[

I C�

0 �

][
z(k)

w(k)

]
, (19)

ya(k) = y(k) = [
I 0

][
y(k)

�x(k)

]
, (20)

where the augmented covariance matrices

Q a = diag
(

diag(R) diag(Q )
)
, (21)

Ra = R, (22)

are considered, since z(k) = v(k + 1). xa(k) = [
y(k) �x(k)

]T
is 

the augmented state vector, ya(k) is the output of the augmented 
system and �u(k) is the control increment, such that � = 1 − q−1. 
Then,

u(k) = u(k − 1) + �u(k), (23)

is the control signal to be applied to the system input, which can 
easily be implemented on a digital computer to achieve incremen-
tal control.

3. Estimation of the quadrotor MIMO stochastic model

In this work the MIMO process encompasses a distributed sys-
tem comprised of a ground control station, a wireless network 
and the quadrotor (model AR.Drone 2.0 manufactured by Parrot 
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Drones SAS). This system was modeled using experimental sys-
tem identification by means of non-recursive least-squares esti-
mation based on input/output registered flight data. To link the 
quadrotor and the ground computer it was used the software de-
velopment kit developed by [33] for MATLAB® using the sampling-
time of Ts = 0.065 second, which is the manufacturer standard 
[34].

3.1. Multivariable stochastic state-space model identification

The non-recursive least-squares estimation algorithm is used 
in a combined system identification form [35], since the deter-
ministic state-space model identification (i.e. the estimation of 
A, B) is followed by the stochastic identification (i.e., estimation 
of �, Q , R).

Assuming that all the state-variables are being measured or es-
timated, the non-recursive least-squares parametric estimator can 
be used to identify the following system parameters:

⎡
⎢⎣

x1(k)
...

xn(k)

⎤
⎥⎦ =

⎡
⎢⎣

â11 · · · â1n
...

. . .
...

ân1 · · · ânn

⎤
⎥⎦

⎡
⎢⎣

x1(k − 1)
...

xn(k − 1)

⎤
⎥⎦

+
⎡
⎢⎣

b̂11 · · · b̂1nu

...
. . .

...

b̂n1 · · · b̂nnu

⎤
⎥⎦

⎡
⎢⎣

u1(k − d)
...

unu (k − d)

⎤
⎥⎦

+
⎡
⎢⎣

γ̂11 · · · γ̂1n
...

. . .
...

γ̂n1 · · · γ̂nn

⎤
⎥⎦

⎡
⎢⎣

w1(k − 1)
...

wn(k − 1)

⎤
⎥⎦ , (24)

⎡
⎢⎣

y1(k)
...

yny (k)

⎤
⎥⎦ = [

Iny×ny 0ny×(n−ny)

]
⎡
⎢⎣

x1(k)
...

xn(k)

⎤
⎥⎦ +

⎡
⎢⎣

v1(k)
...

vny (k)

⎤
⎥⎦ . (25)

The estimated parameters vectors are defined as

θ̂ T
1 =

[
â11 · · · â1n b̂11 · · · b̂1nu γ̂11 · · · γ̂1n

]
...

θ̂ T
n =

[
ân1 · · · ânn b̂n1 · · · b̂nnu γ̂n1 · · · γ̂nn

] (26)

and future observations are based on the following vector of re-
gressors:

φT
ls (k) = [ [x(k − 1)]T

1×n [u(k − d)]T
1×nu

[w(k − 1)]T
1×n

]
. (27)

The vectors of regressors, of a total of N samples, are organized 
to form the matrix of regressors,

� =
⎡
⎢⎣

φT
ls (k)
...

φT
ls (N)

⎤
⎥⎦

N×(2n+nu)

, (28)

leading to the least-squares estimation error covariance matrix,

P =
(
�T�

)−1

(2n+nu)×(2n+nu)
. (29)

Considering X1, . . . , Xn the measurements vectors, the matrix 
formed by the vectors of parameters can be calculated in the fol-
lowing manner:
[
θ̂1 · · · θ̂n

]
(2n+nu)×n

= P�T[ X1 · · · Xn
]

N×n. (30)

To identify the state Gaussian noise vector and its input ma-
trix, �w(k − 1), as well as the output process noise vector, v(k), 
the identification procedure is made in a combined form [35] in 
order to estimate �w(k − 1) and v(k), as the estimated state er-
ror and estimated output error, respectively. In the first run of the 
algorithm the deterministic part is estimated, such that

x(k) = Āx(k − 1) + B̄u(k − d) + w̄(k − 1), (31)

where Ā, B̄ are provisory estimated matrices and the estimation 
residuals, w̄(0), . . . , w̄(N − 1), are then used in the complete vec-
tor of regressors shown in (27), to estimate the complete combined 
deterministic-stochastic model. Alternatively, observer/Kalman fil-
ter identification or extended recursive least-squares estimator 
can be applied for the adaptive control synthesis or when ill-
conditioned (non-invertible) �T� occurs.

3.2. System identification applied to the quadrotor

Consider the following state vector,

xT = [
φ θ uspd vspd ψ r h wspd

]
, (32)

where φ(k) is the roll angle [rad], θ(k) is the pitch angle [rad], 
uspd(k) is the longitudinal speed [m/s], vspd(k) is the lateral speed 
[m/s], ψ(k) and r(k) are respectively the yaw/heading angle [rad] 
and the yaw angular speed [rad/s], h(k) and wspd(k) are respec-
tively the altitude [m] and the vertical speed [m/s]. The quadrotor 
orientation is given in the x, y, z axes defined in the North-East-
down system [36], such that right-handed rotation about the x-axis 
gives positive roll; about the y-axis gives positive pitch; about the 
z-axis gives positive yaw.

The considered input vector of the system is given by

uT (k) = [
uv(k) uu(k) uψ(k) uh(k)

]
(33)

where all inputs were defined in the range of [−1, 1] and uv(k) is 
the lateral thrust, uu(k) is the longitudinal thrust, uψ(k) is the yaw 
thrust, uh(k) is the vertical thrust.

In order to simplify the system identification, the procedure 
was subdivided into three subsystems: the horizontal speed system 
(influence of uv (k) and uu(k) to lateral/longitudinal dynamics), the 
yaw/heading system (influence of uψ(k) to yaw dynamics and the 
altitude system (uh(k) to vertical dynamics).

The complete system model was identified in three batch pro-
cedures for the three systems considered, such that in Fig. 1 it 
is shown the model validation results for the Lateral/Longitudi-
nal dynamics and in Fig. 2, for the yaw and altitude dynamics, 
where it is possible to observe how close the simulated outputs fit 
to the real registered outputs. To validate the model, a new data 
set of inputs and outputs were used, where this new set of in-
puts was used to excite the identified model to produce a data 
set of simulated outputs to be compared to the real measured out-
puts. The system identification and system validation datasets were 
obtained during real flight experiments with the quadrotor, while 
registering state and inputs variables shown in (32) and (33), re-
spectively.

The system time delay of d = 3 was observed experimentally 
and estimated system matrices and covariance matrices are given 
by:
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Fig. 1. Lateral/Longitudinal system model validation.
A =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8177 −0.00617 −0.0006665 −0.007602
0.005481 0.8208 0.009405 0.0007079
0.02713 −0.7337 0.9996 −0.0005473
0.7289 −0.01162 0.001246 0.9989

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.9983 0.04624 0 0
−0.02621 0.7114 0 0

0 0 0.9992 0.01185
0 0 −0.01249 0.1823

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.09348 0.002153 0 0
−0.001933 0.09677 0 0
−0.007098 0.003633 0 0
−0.007148 0.002068 0 0

0 0 0.02743 0
0 0 0.4219 0
0 0 0 0.03733
0 0 0 0.5742

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

� =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1174 0.006617 0.001413 −0.001458
−0.0005712 0.1364 −0.001605 −0.001304

0.04352 0.2938 −0.03775 0.01228
−0.3667 −0.05233 0.00218 −0.0197

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.00126 0.008644 0 0
0.01938 0.133 0 0

0 0 0.002158 0.00117
0 0 0.0332 0.018

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

Q =
diag

(
0.0002268 0.0002791 0.01412 0.01568

0.1367 0.006427 0.003046 0.01989
)

(37)

R = diag
(

0.03363 0.02296 0.01367 0.003046
)

(38)

For the required autopilots in this project, the output vector is 
y(k) = [

vspd(k) uspd(k) ψ(k) h(k)
]T , such that the output matrix 

is given by

C =

⎛
⎜⎜⎝

0 0 0 1.0 0 0 0 0
0 0 1.0 0 0 0 0 0
0 0 0 0 1.0 0 0 0
0 0 0 0 0 0 1.0 0

⎞
⎟⎟⎠ . (39)

4. Simulation and experimental results

In this section, the MIMO GMVSS controller will be investigated 
in several different simulation conditions: i) in centralized MIMO 
control of lateral/longitudinal speeds, heading angle and altitude, 
where the influence of the prediction horizon and control effort 
weighting are assessed in terms of control performance and com-
putational load of the algorithm; ii) in decentralized MIMO control 
of the heading angle and altitude to assess different prediction 
horizons between the three designed autopilots; iii) in compar-
ison to an industry-standard MPC; iv) in the assessment of the 
sensitivity to stochastic disturbances to assess the minimum vari-
ance performance. Finally, the MIMO GMVSS is applied to the real 
quadrotor in an outdoor flight under light and moderate wind gust 
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Fig. 2. Yaw and altitude models validation.

Fig. 3. Lateral/Longitudinal speed hold autopilots in the MIMO case for different N y values.
conditions. Experimental results are also compared to industry-
standard MPC.

4.1. Quadrotor autopilot requirements

To the best of authors’ knowledge, there is no standard specifi-
cations for quadrotors autopilots to date. So far, the major concern 
regards integrating unmanned aerial systems (UAS) into air-traffic 
management (ATM), establishing rules at which drone manufac-
turers must be aware of, such as the European Organisation for 
the Safety of Air Navigation “UAS ATM Flight Rules”, for example. 
Thus, in this work we propose quadrotor autopilot specifications 
based on ATM spatial separation rules.

According to [36], the minimum vertical separation of a mod-
ern highly automated passenger aircrafts is 300 m (1000 ft) and its 
altitude hold autopilot typically holds the aircraft well within ±60
m (200 ft). The proportional ratio to set the hold autopilot specifi-
cation is 1/5. Based on this and on the fact that quadrotors can fly 
indoors and outdoors, a 1 m for vertical and horizontal separation 
rule is being considered and by the 1/5 ratio, the altitude autopi-
lot must hold within ±0.2 m, ±0.2 m/s for velocities autopilots 
and ±0.2 rad for the heading autopilot.
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Fig. 4. Heading and altitude hold autopilots in the MIMO case for different N y values.

Fig. 5. Lateral/Longitudinal speed hold autopilots in the MIMO case for different � values.
The transitory and the steady-state behavior will be evaluated 
using step-like reference sequences such that the vector of refer-
ences is defined as follows:

yr(k) = [
v Ref (k) uRef (k) ψRef (k) hRef (k)

]T
,

where the subscript Ref regards reference values for the controlled 
outputs.
4.2. Centralized MIMO control autopilot

In centralized MIMO control design, a single prediction hori-
zon is considered for the three autopilots under investigation. The 
design model was augmented to include integrators to its inputs 
and the following described procedures were executed to tune 
and select N y and �: N y = d + 1 was set in order to find a 
stabilizing control weighting matrix � = diag(λv , λu, λψ, λh). � =
diag(90, −90, 30, 15) was selected (where the negative value for 
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Fig. 6. Heading and altitude hold autopilots in the MIMO case for different � values.

Fig. 7. Heading hold and altitude hold autopilots results with decentralized MIMO control.
λu was required due to the negative DC gain of the longitudinal 
system) and the set of N y = {5, 10, 15, 20, 25} was assessed to 
evaluate the influence of prediction on the transitory behavior and 
on the computational load by means of the average time evalua-
tion of the algorithm iterations.

In Fig. 3 it is shown how the increase in the prediction horizon 
affects the damping of the lateral/longitudinal speeds, reducing os-
cillations and the settling time, progressively. In Fig. 4, the same 
effect on the damping was observed, however it can be seen that 
N y = 25 was not sufficient to avoid increasing the yaw angle and 
the altitude overshoots.

In terms of the computational load, the average time of the al-
gorithm iterations for the prediction set N y = {5, 10, 15, 20, 25}
was, respectively: 100, 115, 133, 147, 153 microseconds. A 4th 
Generation Intel Core i5-4200U CPU at 1.6 GHz, 4 GB of RAM, with 
Ubuntu 18.04 and MATLAB® R2018a was used to run the simula-
tions.

In Figs. 5 and 6 it is shown the influence of the � matrix, 
while maintaining N y = 25. The following tuning set, based on 
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Fig. 8. Lateral/Longitudinal speed hold autopilot results with decentralized GPC control.

Fig. 9. Heading hold and altitude hold autopilots results with decentralized GPC control.
� = diag(90, −90, 30, 15), was selected: {2�, 4�, 8�, 16�}. It can 
be seen that by increasing the magnitude of the � matrix, leads 
to a more conservative control action, but it does not mitigate os-

cillations of the yaw and altitude control problems. Instead, the 
overshoot and the settling time has increased. To try to over-

come these problems with these autopilots, the heading-hold and 
altitude-hold systems will be assessed in a decentralized form in 
the next subsection.
4.3. Decentralized GMVSS control

In this section the yaw and altitude control systems are de-
signed independently of the lateral/longitudinal speed controller, 
allowing independent prediction horizons, such that three control 
systems are designed: centralized MIMO lateral/longitudinal speed 
hold; SISO heading hold and SISO altitude hold autopilots.

In Fig. 7 it is shown the results of the heading hold using 
N y = 80, � = 240 and the altitude hold using N y = 100, � = 200, 
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Fig. 10. Lateral/Longitudinal speed hold autopilot: GPC versus GMVSS control comparison.
selected by trial and error while trying to reduce the overshoot. 
Unfortunately, the settling time has increased significantly in face 
of previously assessed tuning parameters for the same autopilots, 
degrading the response speed that might be required to execute 
high speed maneuvers. It is also important to remark that the 
overshoots are not violating the quadrotor autopilot requirements
proposed in Section 4.1.

4.4. GMVSS autopilots versus GPC autopilots

The GPC is assessed in this subsection in order to compare 
its results to the proposed GMVSS MIMO controller. The GPC au-
topilot was implemented based on the system polynomial model 
[37], obtained after transforming the state-space realization into 
its transfer function description.

The GMVSS autopilots are simulated using � = diag(90, −90,

30, 15) and N y = 25, while the GPC tuning is modified to estab-
lish the comparison. The GPC, however, uses four tuning parame-
ters: the N1 = d to compensate the process time-delay, the control 
weighting factor λi , i = 1, . . . , nu , the output prediction horizon 
N y , and the control prediction horizon Nu , which refers to future 
control actions in a receding-horizon control scheme [24].

From a deterministic viewpoint, Nu in the GPC can be set as 
small as possible, since it is considered that the control incre-
ment �u(k) will tend to zero in the near future, but it will never 
happen from the stochastic viewpoint and this parameter will be 
further assessed in the subsection of stochastic disturbance sensi-
tivity analysis and minimum variance performance evaluation.

In Figs. 8 and 9, the GPC simulation results are shown. Three 
tuning sets were considered: GPC-1 Nspd

y = 5, Nψ
y = 5, Nh

y = 5 and 
λgpc = {90, 90, 30, 15}; GPC-2 Nspd

y = 7, Nψ
y = 15, Nh

y = 15 and 
λgpc = {90, 90, 30, 15}; GPC-3 Nspd

y = 15, Nψ
y = 25, Nh

y = 25 and 
λgpc = {4 × 104, 2 × 104, 30, 15}. Nu = d was used with these three 
cases.

From the results shown in Figs. 8 and 9 it was selected the 
GPC-3 tuning case as the best one in terms of response speed and 
damping. This result is plotted against the GMVSS best result and 
shown in Figs. 10 and 11 in order to assess the performance of 
the autopilots without the presence of process and measurement 
noises. It is possible to observe that in this deterministic analysis 
the GMVSS presented fast and damped output responses in the lat-
eral/longitudinal speed control, whereas the GPC has outperformed 
the GMVSS in the yaw and altitude control.

4.5. Autopilots minimum variance performance

In order to hold speed, altitude and compass heading, the de-
signed autopilots must be robust to wind, to ground effect and wall 
effect of turbulent air coming back and surrounding the quadrotor, 
along with other parasitic dynamics in general. These effects are 
being represented by the stochastic disturbances of the modeled 
system in the form of process noises and measurement noises. In 
this subsection, designed autopilots are assessed in terms of their 
sensitivity to stochastic disturbances and their minimum variance 
performance. The selected tuning for the GMVSS in this essay is 
� = diag(90, −90, 30, 15) and N y = 25. For the GPC, the analysis 
starts with GPC-3 tuning, using Nu = d.

It is possible to observe in Figs. 12 and 13 that the GMVSS 
method outperformed the traditional MPC in the minimum vari-
ance performance, showing a much lower sensitivity to stochastic 
disturbances with different variance values, concerning different 
system dynamics, such as horizontal speeds, yaw angle and alti-
tude.

The performance of the controlled outputs appears to be sim-
ilar, but the stochastic performance of the control signal of the 
GPC method, in this particular case study, is physically unrealiz-
able, since it violates the input saturation constraints of [−1, 1]. 
The same experiment was then repeated using GPC’s Nu = N y and 
the results are shown in Figs. 14 and 15. It can be observed the 
reduction in the control signal chattering, in the GPC autopilots 
when Nu = N y . However, this result is still unrealizable in practice 
due to excessive chattering and high amplitude values in the con-
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Fig. 11. Heading hold and altitude hold autopilots: GPC versus GMVSS control comparison.

Fig. 12. Lateral/Longitudinal speed hold autopilot: GPC with Nu = d versus GMVSS minimum variance performance.
trol signal required to produce similar GMVSS controlled output 
performance.

Minimum variance performance results can be summarized in 
terms of controlled output signals and control signals variances, as 
presented in Tables 1 and 2, respectively. The lowest the variance, 
the lowest is the deviation from the mean value of the considered 
variable. From the controlled output perspective, it means better 
reference tracking and regulation, and from the control signal per-
spective, it means less power consumption and less wearing of 
actuator devices.

The enhanced stochastic performance of GMVSS in this case 
study came with the increased computational load of the algo-
Table 1
Outputs minimum variance performance indices.

Method σ 2
vsdp

σ 2
usdp

σ 2
ψ σ 2

h

GMVSS 0.0579 0.0477 0.0378 0.0269
GPC{Nu = N y } 0.0670 0.0561 0.0403 0.0272
GPC{Nu = d} 0.0660 0.0566 0.0431 0.0273

rithm when compared to the GPC. The average iteration time of 
the GMVSS was 153 μs, while the GPC was 65 μs.
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Fig. 13. Heading hold and altitude hold autopilots: GPC with Nu = d versus GMVSS minimum variance performance.

Fig. 14. Lateral/Longitudinal speed hold autopilot: GPC with Nu = N y versus GMVSS minimum variance performance.
Table 2
Inputs minimum variance performance indices.

Method σ 2
uv

σ 2
uu

σ 2
uψ

σ 2
uh

GMVSS 0.0002 0.0002 0.0005 0.0015
GPC{Nu = N y } 1.8924 1.8476 0.7565 0.0550
GPC{Nu = d} 2.5561 6.2198 2.4754 0.1872

4.6. Experimental flight results

To give a proof of concept, the designed GMVSS autopilots were 
tested with the real quadrotor using MATLAB® and Simulink® with 
automatic code generation and the software development kit of 
[33]. The tests occurred in outdoor flights at a parking lot of the 
Federal University of Pará near the Guamá River (cf. Fig. 16) in two 
different weather conditions: under light wind gusts and moderate 
wind gusts. The GPC autopilots were tested only under light wind 
conditions due to safety reasons.

The weather forecast, for the time of the flight under light 
winds, was: wind direction 59◦ , wind speed 2 m/s (4 kts), wind 
gusts 3.6 m/s (7 kts), air temperature 27 − 32◦C , air pressure 1010
hPa. For the flight under moderate winds, was: wind direction 88◦ , 
wind speed 3.6 m/s (7 kts), wind gusts 6.2 m/s (12 kts), air tem-
perature 28 − 32◦C , air pressure 1009 hPa. The data was obtained 
from the closest weather station located at the International Air-
port of Belém, located in the northern Brazil.
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Fig. 15. Heading hold and altitude hold autopilots: GPC with Nu = N y versus GMVSS minimum variance performance.

Fig. 16. Quadrotor flying at a parking lot of the Federal University of Pará near the Guamá River located in northern Brazil.
4.6.1. Flight under light wind with GMVSS
In Figs. 17 and 18, the GMVSS autopilots results under light 

wind gusts are shown. All remote wireless autopilots were already 
engaged from takeoff to landing, however, during these terminal 
stages the quadrotor cannot accept any remote control commands 
and integrator windup effect occurs. Even though, GMVSS was ca-
pable of handling windup and the arbitrary initial condition, guar-
anteeing speed hold, heading hold and altitude hold functions, 
with similar results as observed in the simulations. For example, 
comparing the speed hold results to the ones seen in Fig. 14, it is 
possible to observe that the noises seen in practice and its effects 
in closed-loop control are similar to those observed in the simula-
tions.

For reference signal tracking, speed tracking tests were avoided 
due to safety reasons and only the GMVSS heading and altitude 
autopilots were assessed in flight. In Figs. 19 and 20 these results 
are shown, where it is possible to observe that despite the noise 
and disturbances in the real experiment, the yaw and the altitude 
references were tracked with small overshoots, similar to those ob-
served in the simulation results (cf. Fig. 11).

4.6.2. Flight under light wind with GPC
The simulation results of the GPC autopilots anticipated an un-

feasible implementation of such controllers, since all observed con-
trol signals violated the input saturation constraint of [−1, 1] (cf. 
Figs. 14 and 15). Despite anticipating the problem seen in the sim-
ulations, the GPC was assessed during a short time flight in three 
unsuccessful attempts to takeoff and control the quadrotor. These 
results were omitted since the flight vehicle became unstable and 
required emergency landings.

In order to cope with inputs saturation limits, the GPC au-
topilot code was modified to saturate the control vector in case 
of any violation and the quadrotor was able to fly for a longer 
period in order to provide data for comparisons. The results are 
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Fig. 17. GMVSS lateral/longitudinal speed-hold autopilots under light wind gusts.

Fig. 18. GMVSS yaw-hold and altitude-hold autopilots under light wind gusts.
shown in Figs. 21 and 22. Differently from the GMVSS, the integra-
tor windup effect, along with arbitrary initial conditions and noise, 
made the GPC speed hold and altitude hold autopilots oscillate, 
causing lateral and longitudinal dispersions beyond the available 
physical space of the flight location, forcing a premature landing. 
This modified GPC, however, has performed surprisingly well in 
the heading hold function, as can be observed in Fig. 22.

4.6.3. Flight under moderate wind with GMVSS
To assess the wireless GMVSS autopilots under stronger winds, 

more flight tests were conducted in a day with wind gusts of over 
6 m/s. In Figs. 23 and 24, it is possible to observe that moderate 
wind gusts affected more the lateral and longitudinal speeds, but 
could not compromise the vehicle stability, confirming the robust-
ness of the autopilots under stronger winds.
Since the data is noisy and it might be difficult to differenti-
ate these results from previous ones using the graphics alone, it is 
shown in Tables 3, 4 and 5, the variances of the outputs, of the 
inputs and the mean values of the outputs, respectively. In these 
tables, the subscripts L and M are respective to light and moderate 
wind conditions. These performance indices were calculated based 
on the regulatory behavior, i.e., excluding terminal stages of takeoff 
and landing.

The outputs and inputs variances, respectively shown in Ta-
bles 3 and 4, allow the evaluation of the control effort or the 
power that was required to keep the controlled variables as close 
as possible to the desired values. The presented data, reassures, 
with a real experiment, the superiority of GMVSS when compared 
to an industry-standard MPC, at least in this particular case study 
with remote automatic control of a quadrotor.
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Fig. 19. GMVSS yaw-hold reference signal tracking under light wind gusts.

Fig. 20. GMVSS altitude-hold reference signal tracking under light wind gusts.
Table 3
Outputs variances from real flight data.

Case σ 2
vspd

σ 2
uspd

σ 2
ψ σ 2

h

GMVSSL 0.0100 0.0174 0.0013 0.0014
GMVSSM 0.0651 0.0768 0.0064 0.0035
GPCL 0.2789 0.1816 0.0001 0.0604

Table 4
Inputs variances from real flight data.

Case σ 2
uv

σ 2
uu

σ 2
uψ

σ 2
uh

GMVSSL 0.0002 0.0003 0.0002 0.0003
GMVSSM 0.0012 0.0019 0.0009 0.0008
GPCL 0.2147 0.1766 0.0013 0.6175

The mean values of the outputs, calculated from registered 
flight data and which are shown in Table 5, allow the assess-
Table 5
Outputs mean values from real flight data.

Case v̄spd ūspd ψ̄ h̄

GMVSSL 0.0013 0.0037 0.0008 1.0024
GMVSSM −0.0034 −0.0023 0.0001 1.0074
GPCL −0.1318 −0.1697 0.0000 0.99943

ment of designed autopilots in terms of speed, heading and alti-
tude average dispersion. Based on the data shown in Table 5, all 
designed autopilots presented mean values close to the desired 
values, whereas the GPC, in the heading hold function, has shown 
a surprisingly superior performance.

The overall result, based on the presented experimental data 
and focusing on the trade-off between control effort and track-
ing error variance minimization, is that the GMVSS could achieve 
superior performance for this case study on remote wireless au-
topilots for a quadrotor.
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Fig. 21. GPC lateral/longitudinal speed-hold autopilots with control saturation. Real flight under light wind gusts.

Fig. 22. GPC yaw-hold and altitude-hold autopilots with control saturation. Real flight under light wind gusts.
5. Conclusions

In this work, a non-adaptive multivariable control design tech-
nique, based on predictive generalized minimum variance control 
in the state-space, was proposed and applied in simulation and in 
real-time implementation to control a quadrotor. Designed autopi-
lots and the flight vehicle were connected by a wireless network, 
where sensor noise, stochastic disturbances and time-delay were 
handled altogether by the proposed MIMO GMVSS method.

Assessed results, simulated and experimental, were compared 
to an industry-standard MPC, confirming the superiority of the 
MIMO GMVSS in this particular case study, handling sensor noise 
and stochastic disturbances, such as light and moderate wind 
gusts, in the following autopilot functions: lateral/longitudinal 
speed hold, heading hold and altitude hold.
Despite showing a superior minimum variance performance, 
the GMVSS presented a more demanding computational load when 
compared to the GPC. The average iteration time of the MIMO 
GMVSS algorithm was more than twice the average time of the 
GPC. However, stochastic MPC techniques are still in a state of flux 
[25] along with advances in microprocessors technology to support 
new algorithms and further developments of GMVSS in the adap-
tive, constrained and non-linear cases.
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Fig. 23. GMVSS lateral/longitudinal speed-hold autopilots. Real flight under moderate wind gusts.

Fig. 24. GMVSS yaw-hold and altitude-hold autopilots. Real flight under moderate wind gusts.
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