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Abstract: This paper proposes the performance and robustness analysis of the positional and
incremental Generalized Minimum Variance Control (GMVC), designed in adaptive and non-
adaptive topology, experimentally in a Multiple-Input and Single-Output (MISO) physical
process, which has aerodynamics similar to several aerospace processes, where performance
and robustness indexes are evaluated, widely studied in academia and industry. In addition to
evaluating the design of the didactic plant to prove the efficiency of control techniques with
the use of a complementary filter together with the responses of the sensors. The model is
identified with the least squares estimation algorithms, being applied recursively to the adaptive
algorithms. The results shows that GMVC with incremental action in the ARIX model in the
self-tuning topology proved to be more efficient.
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1. INTRODUCTION

Several processes require controllers to obtain reference
tracking and rejection of unwanted disturbances (Åström
and Wittenmark, 2013b). Currently, with the spread of
predictive control, it has been widely addressed and ap-
plied in the study of process control, because its character-
istics, such as robustness, guarantee of reference tracking,
disturbance rejection and prediction of the output, those
are advantages that make these controllers very useful and
necessary for the advancement of studies in the field of
control theory. Among these controllers, there is the Gen-
eralized Minimum Variance Controller (GMVC), which is
a Model Based Predictive Controller (MBPC) that has
been used successfully in process control area and has been
gaining space in industry.

The algorithms based in MBPC uses the models of the
system to be controlled along with certain parameters
that aim to minimize a cost function, to design a control
law that is applied to the system (Fernandez-Camacho
and Bordons-Alba, 1995). However, when the model is
unknown, designers must resort to adaptive control tech-
niques, that is, when the formulation of the control law,
which requires the model, is updated at each iteration,
since the model is identified at each sampling time (Åström
and Wittenmark, 2013a). In the proposed work, we used
the technique of identification parametric using the Recur-
sive Least Squares algorithm, which has been widely used
in academia and industry for process modeling (Aguirre,
2004; Coelho and dos Santos Coelho, 2004; Da Silva et al.,
2021a).

The importance of evaluating the performance and ro-
bustness of predictive controllers, whether adaptive or
not, is to obtain measures that qualify and quantify such
controllers for academic or industrial applications. Ac-
cording to De Barros Araújo et al. (2016), for complex
processes, MBPCs have been widely used and indexes, as
Phase Margin (PM), Gain Margin (GM), among others
are analysed. Therefore, the use of a plant or a prototype
to test the effectiveness of the identification and control
is important and very motivating, since, in this way, the
control algorithm developer can analyse an application in
a real system. In the present work, we used a MISO system
to evaluate the efficiency of controllers implemented in a
highly complex process, in addition to evaluating the use of
the complementary filter and the sensors instrumentation
used to acquire the reading of sensor data.

According to the controller design, the performance in-
dexes can change for better or worse, for this reason, the
proposed work aims to analyze the performance of the
adaptive and non-adaptive topology GMVC in a MISO
system in terms of reference tracking, disturbances rejec-
tion, prediction of the outputs and robustness of the con-
troller. This work is organized as follows. The second sec-
tion presents the process composition. The third section,
the importance and appliance of sensors and filters used
are presented to explain the signal reading. The model and
the estimation are presented in the fourth section. The
GMVC in positional and incremental topology are pre-
sented in the fifth section. The robustness and performance
indexes used are presented in the sixth section. The results
are analyzed in the seventh section and the conclusions of
the research will be made in the eighth section.



2. PROCESS COMPOSITION

The didactic process used in this research, is the same
developed by Yamaguti et al. (2021), this didactic process
has dynamics similar to heavy delivery vehicles in the
military aerospace sector, such as the Boeing CH-47 Chi-
nook, where propulsion is carried out by two propellers and
the control variable is the angular position of the moving
component of the system, therefore it is a MISO system
with two inputs and one output.

The prototype was developed using the Computer Aided
Design application (CAD) 3D Inventor®. The design
created with the Inventor® software is shown in Figure
1.a. Then, the project which was manufactured on a 3D
printer, is shown in Figure 1.b, where can be seen various
components to the operation of the didactic process.

a. 3D model. b. Process developed for the research

Figure 1. Didactic plant

The electrical circuit diagram was created using ISIS-
Proteus® software, the Figure 2 shows this diagram
planned to read the signal from the MPU-6050, used as the
angular sensor, and for sending the signal from the con-
trol action (signal generated by an Arduino UNO output,
which is an open source electronic prototyping platform
based on the ATmega328P microcontroller), and power
from an external source.

1
2

J1

SOURCE

VI1 VO 3

G
N

D
2

U1
7805

R1
10k

Q1
TIP122

D1
1N4007

1
2

J2

MOTOR 1

Q2
TIP122

R2
10k

D2
1N4007

1
2

J3

MOTOR 2

R3
330

1
2
3
4
5
6

J5

CONN-SIL6

R4
330

R5
330

1
2
3
4

J6

CONN-SIL4

SCL

GROUND

A

K

C

E

B

1

2 4

5
6

U3

4N35

GROUND

A

K

C

E

B
1

2 4

5
6

U2

4N35

SDA

GROUND
VCC

R6
10k

R7
10k

VCC

A K

D3

LED-YELLOW

Figure 2. Schematic of motors drive circuit, developed in
ISIS-Proteus® software.

3. SIGNAL READING

The sensor used to read the angular position of the didactic
process was the inertial sensor (IMU – Inertial Measure-
ment Units) MPU-6050, which makes use of a microelec-
tromechanical system (MEMS – Microelectromechanical
Systems) which enables the MPU-6050 module to contain
gyro and accelerometer sensors.

3.1 Gyrometer

For Bueno and Romano (2014) and Santos et al. (2017),
the gyrometer reads values referring to the angular veloc-
ity, in this way, to obtain values referring to the angular
position, knowing the conditions, the initial signal must
be integrated into the time. Thus, the Difference Equation
(DE) that performs the integration operation is given by:

x(k) = x(k − 1) + ω(k)Ts (1)

where, x, k, ω and Ts represent the estimated angular
position, the instant of time, the angular velocity read
measurements and the sampling period, respectively.

This integration will result in a considerable rise in error,
which will increase with each output signal iteration. This
cumulative error is known as a drift error. A possible
solution to this problem is using the following High Pass
Filter (HPF) on the output signal:

θgyro(k) = βθgyro(k − 1) + x(k)− x(k − 1) (2)

β = e−
Ts
τ (3)

where θgyro is the filtered angular position and β is the
time constant that regulates the low cutoff frequency of
the HPF through the relation (3) and in (3), τ is the time
constant. Observing (1) and (2), it can be concluded that
the output of the integrator and the input of the HPF are
connected in cascade. So, substituting (1) into (2):

θgyro(k) = βθgyro(k − 1) + ω(k)Ts (4)

3.2 Accelerometer

Taking into consideration three-dimensional space, the
orientation of the acceleration can be calculated by

θ(k) = tg−1

[
ay(k)√

a2x(k) + a2z(k)

]
.
180

π
(5)

where θ, ay, ax and az correspond to the resulting ori-
entation, to the accelerations in y, x and z, respectively.
According to Barrera Prieto (2018), accelerometers reads
a lot of high-frequency noise, a possible way to attenuate
these noises is with the implementation of following Low
Pass Filter (LPF):

θacel(k) = βθacel(k − 1) + (1− β)θ(k − 1) (6)



where θacel is the filtered acceleration orientation and θ is
the unfiltered acceleration orientation, both in the discrete
time domain.

3.3 Complementary filter

According to Barrera Prieto (2018), the gyroscope is re-
sponsible for accurately measuring high-frequency behav-
iors and the accelerometer, with its zero stationary error
measurement, is responsible for measuring low-frequency
behaviors. In this way, the Complementary Filter (CF) is
used to take advantage of each sensor in order to obtain a
more reliable reading. The CF can be calculated using the
following equation

θx(k) = α [θx(k − 1) + θgyro(k)Ts] + (α− 1) θacel(k) (7)

where θx is the CF output (estimated angular position)
and α is the fusion complementation coefficient, its value
is selected based on experimental tests. For this work, the
value of α = 0.98 was selected.

4. ESTIMATION OF DAMPED PENDULUM MODEL

For practical purposes, the system identification method
used, was the application of Least Squares (LS). To control
the MISO process, such as the process used in this paper,
the controllers were designed using a strategy to act in a
decentralized manner (Yamaguti et al., 2021; Coelho and
dos Santos Coelho, 2004).

The Figure 3 shows the MISO system block diagram,
considering the Auto Regressive with inputs eXogenous
(ARX) model, as the process has two inputs (u1(k) and
u2(k): two propulsion engines) and one output (y(k):
angular position of the didactic process), it is possible to
write the output signal as (8).

𝑮(𝒛)

𝒖𝟏(𝒌)

𝒖𝟐(𝒌)

𝒚(𝒌)+

𝐵1 𝑧 𝑧−1

𝐴(𝑧)

𝐵2 𝑧 𝑧−1

𝐴(𝑧)

Figure 3. MISO system block diagram within ARX model.

y(k) =
B1(z)z

−1

A(z)
u1(k) +

B2(z)z
−1

A(z)
u2(k) (8)

where B1(z) and B2(z) are the polynomials filtering the
input u1(k) and u2(k), respectively.

Due the system has an underdamped dynamic, considering
that the estimated discrete model is second order, (8) can
be represented as a difference equation, as in (9).

y(k) = −a1y(k − 1)− a2y(k − 2)
+b10u1(k − 1) + b11u1(k − 2)
+b20u2(k − 1) + b21u2(k − 2)

(9)

4.1 Non-Recursive Least Squares

According to Yamaguti et al. (2021) Non-Recursive Least
Squares (NRLS) estimator is designed taking into account
two factors: knowledge of the dynamics of the process, and
according to the value of the squared Pearson correlation
coefficient (R2):

R2 = 1−
∑N

k=1 [y(k)− ŷ(k)]
2∑N

k=1 [y(k)− ȳ]
2

(10)

where ŷ(k), ȳ and N correspond to estimated output,
average output and number of samples, respectively. Ac-
cording to Coelho and dos Santos Coelho (2004), for many
practical applications, values ofR2 between 0.8 and 1.0 can
be considered sufficient. After identification via NRLS, a
value of R2 = 0.972 was obtained.

Thus, using (9), the vector containing the read data (mea-
sures vector – y), presented in (11), the matrix encompass-
ing inputs and output data of the system (matrix of regres-
sors – Φ), presented in (12), and the vector of estimated
parameters (θ), presented in (13), may be determined.

yT = [y(1) y(2) . . . y(N)] (11)

Φ =


−y(1) 0 u1(1)
−y(2) −y(1) u1(2)

...
...

...
−y(N − 1) −y(N − 2) u1(N − 1)
0 u2(1) 0

u1(1) u2(2) u2(1)
...

...
...

u1(N − 2) u2(N − 1) u2(N − 2)


(12)

θT = [a1 a2 b10 b11 b20 b21] (13)

After defining (11), (12) and (13), the following algebraic
equation appears:

y = Φθ (14)

According to Coelho and dos Santos Coelho (2004); Ya-
maguti et al. (2021), to calculate θ using (14), it will be
necessary that Φ is a square matrix, however Φ is a matrix
of order ΦN,6. Thus, according to Aguirre (2004), it is
necessary to apply the pseudo-inverse matrix. As a result,
the solution of non-recursive least squares estimator was
determined by computing θ as (15).

θ = [ΦTΦ]−1ΦTy (15)

Using a sequence of steps with amplitude of 1.5V , 3V and
2V , being applied to u1 at 0s, 7s and 9s, respectively, with
sampling period Ts = 0.0135s; and a sequence of steps
with amplitude of 2V , 0V and 1V , in the same instants
mentioned before, it was possible to obtain the output data
and estimate the following parameters vector:

θT = [−1.111 0.184 0.246 −1.117 0.952 −0.404] (16)



4.2 Recursive Least Squares

In the Recursive Least Squares (RLS) method, the model
to be identified, as it uses real-time measurements, it must
be iterative; therefore, the model parameters are updated
at each sampling period (Da Silva et al., 2021a).

Before starting the iterative calculations, the covariance
matrix P was initialized as a diagonal matrix of order 6,
because there are six parameters to be estimated, where
the elements of the main diagonal are equal to 100 to
give the algorithm a good convergence capability of the
estimated parameters and θ was initialized with the same
values in (16).

Then entering the iterative part, Φ, presented in (12), is
now calculated in each iteration as follow:

ΦT = [−y(k − 1) −y(k − 2) u1(k − 1)
u1(k − 2) u2(k − 1) u2(k − 2) ]

(17)

then the estimation gain (L) is calculated by:

L =
PΦ

λ+ΦTPΦ
(18)

where according to Coelho and dos Santos Coelho (2004),
the forgetting factor (λ), provides the RLS algorithm the
adaptability in estimating parameters in time-varying or
non-linear processes. In order to weigh the parameters
estimated essentially on the last data samples, λ = 0.98
was used.

Then the estimated output, yest, is calculated by (19), then
the estimated error, eest, is calculated by (20), and finally,
the estimated parameters, θ, are updated by (21):

yest = ΦT θ (19)

eest = y(k)− yest (20)

θ = θ + Leest (21)

Due the GMVC design is model-based, in self-tuning
control, as the identification parameters are updated with
each iteration, the tuning parameters of the law control of
GMVC are also updated with each iteration.

5. GENERALIZED MINIMUM VARIANCE CONTROL

5.1 Positional

For this MISO system described by an ARX model, the
GMVC goal is to determine the control signals u1(k) and
u2(k) that minimizes the cost function J = E[ϕ(k + d)],
where E[.] indicates the expected value (or mathematical
expectation) and the generalized output is

ϕ(k + d) = P (z)y(k + d)− T (z)yr(k + d)
+Q1(z)u1(k) +Q2(z)u2(k)

(22)

where d is the prediction horizon and the polynomials
P (z), T (z), Q1(z) and Q2(z) weighting the behavior of

output, reference and inputs signals, respectively. To facil-
itate the project, it was made P (z) = T (z) = 1. According
to Silveira et al. (2012), the generalized output in (22),
y(k+d) is a future measurement not available at instant k,
thus it must be predicted in order to work with ϕ(k+d). To
achieve the prediction, the Diophantine equation in (23)
provides two auxiliary polynomial relations:

1 = A(z)E(z) + F (z)z−1 (23)

therefore, solving the Diophantine equation, the design of
the GMV is summarized in determining the polynomials
E(z) and F (z). The order of polynomial E(z) is deter-
mined by ne = d − 1 and the order of polynomial F (z)
is determined by nf = na − 1, so for the case of one step
ahead prediction (d = 1) and knowing that the system is
of second order (na = 2):

E(z) = 1 and F (z) = f0 + f1z
−1 (24)

so, solving (23), it is concluded that:

f0 = −a1 and f1 = −a2 (25)

To finalize the project, the polynomials Q1(z) and Q2(z)
are defined as:

Q1(z) = q1∆ and Q2(z) = q2∆ (26)

where q1 and q2 tune the control efforts for each input, and
the ∆ = 1−z−1 is the incremental action to guarantee null
error in steady state. Thus, looking at Figure 4, the control
laws are given by:

𝒚𝒓(𝒌) 𝒚(𝒌)

+
𝒖𝟏(𝒌)

𝒖𝟐(𝒌)

𝑷𝒓𝒐𝒄𝒆𝒔𝒔

1

𝐵1 𝑧 𝐸1 𝑧 + 𝑄1(𝑧)

1

𝐵2 𝑧 𝐸2 𝑧 + 𝑄2(𝑧)

𝐹(𝑧)

𝐹(𝑧)

−

+
−

𝐵1 𝑧 𝑧−1

𝐴(𝑧)

𝐵2 𝑧 𝑧−1

𝐴(𝑧)

+
+

Controller 1

Controller 2

Figure 4. Block diagram of GMV in MISO system.

u1(k) =
1

b10 + q1
[yr(k + 1)− f0y(k)− f1y(k − 1)

−(b11 − q1)u1(k − 1)]

u2(k) =
1

b20 + q2
[yr(k + 1)− f0y(k)− f1y(k − 1)

−(b21 − q2)u2(k − 1)]

(27)

5.2 Incremental

This time, in the case of the incremental GMVC project,
the Auto-Regressive Integrated with eXogenous Inputs
(ARIX) model will be considered, in the same way, the



objective of the incremental GMVC will be to determine
the control actions u1 and u2 that minimize the cost
function J = E[ϕ(k + d)], where the generalized output
will be expressed by

ϕ(k + d) = P (z)y(k + d)− T (z)yr(k + d)
+Q1(z)∆u1(k) +Q2(z)∆u2(k)

(28)

the Diophantine equation for the ARIX model, is expressed
by

1 = ∆A(z)E(z) + F (z)z−1 (29)

the polynomial E(z) remains E(z) = 1, and the order
of the polynomial F (z) changes, because nf = n∆a − 1,
therefore

E(z) = 1 and F (z) = f0 + f1z
−1 + f2z

−2 (30)

solving (29), it is concluded that:

f0 = 1− a1; f1 = a1 − a2 and f2 = a2 (31)

the control laws are given by:

∆u1(k) =
1

b10 + q1
[yr(k + 1)

−f0y(k)− f1y(k − 1)
−f2y(k − 2)− b11∆u1(k − 1)]

∆u2(k) =
1

b20 + q2
[yr(k + 1)

−f0y(k)− f1y(k − 1)
−f2y(k − 2)− b21∆u2(k − 1)]

(32)

remembering that ∆u(k) = u(k)− u(k − 1), so:

u1(k) = u1(k − 1) + ∆u1(k)
u2(k) = u2(k − 1) + ∆u2(k)

(33)

6. PERFORMANCE AND ROBUSTNESS ANALYSIS

6.1 Performance analysis

The trade-off between performance and robustness is a key
issue in control design (Åström and Wittenmark, 2013b).
Therefore, the use of a quantitative measure that evaluates
the implemented controller is interesting, since when these
performance indicators are minimized, the control system
is considered effective or performing within the desired
standards, and these are chosen with an emphasis on the
specifications considered important to the system (Araújo,
2017).

Integral Square Error (ISE) and Integral Squared control
signal (ISU) are two examples of performance indexes that
can measure the efficiency of a controller, those are used
in discrete time domain (Araújo, 2017). ISE and ISU can
be calculated with (34) and (35), respectively.

ISE =
1

N

N∑
k=1

[e(k)]
2

(34)

ISU =
1

N

N∑
k=1

[u(k)]
2

(35)

The stochastic and probabilistic evaluation of the signals
can present other interesting variables in the evaluation of
the performance of the systems to be controlled (Martins
et al., 2019). In this way, evaluating the variance of the
error (σ2

e) and control (σ2
u) signals is interesting to obtain

a probabilistic and stochastic evaluation of the processing
of digital signals. Those can be calculated, respectively, as
(36) and (37)

σ2
e =

1

N

N∑
k=1

[e(k)− µe]
2

(36)

σ2
u =

1

N

N∑
k=1

[u(k)− µu]
2

(37)

where µe and µu are, respectively, the mean value of error
and control signals.

6.2 Robustness analysis

Robustness indexes are required to qualify the imple-
mented controller as “optimal”. Among those indexes are
Gain Margin (GM) and Phase Margin (PM), which are
directly related to the robust stability of the process.
The higher the values of these indexes, more robust (less
sensitive to unwanted disturbances) the system is, on the
other hand, the dynamic becomes slower (Araújo, 2017;
Da Silva et al., 2021b).

According to Coelho et al. (2019), the GM is defined as
the required variation in the open-loop gain, necessary
to make the system unstable, and the PM also provides
a measure of the relative stability, indicating how much
transport delay can be included in the feedback loop before
instability to occur.

Other two variables are interesting to achieve the values of
GM and PM on the controlled system, the Sensitivity func-
tion (Ssen) and the Complementary Sensitivity (Tcom),
presented in (38) and (39), respectively.

Ssen(z) =
1

1 +Gc(z)Gp(z)
(38)

Tcom(z) =
Gc(z)Gp(z)

1 +Gc(z)Gp(z)
(39)

where Gc(z) and Gp(z) are, respectively, the controller and
the process discrete transfer functions.

The Ssen characterizes the effect of a external disturbance
acting on the output of the control loop, therefore indi-
cates how the closed-loop system is sensitivity to process
changes, while Tcom is the Closed Loop Transfer Function
(CLTF) for set-point changes (Araújo, 2017; Seborg et al.,



2016; Skogestad and Postlethwaite, 2007; Silveira et al.,
2012).

Through some equalities and mathematical movements,
the CLTF (Tcom(z)), of the process is obtained with the
positional and incremental GMVC as, respectively, (40)
and (41)

Tcompos(z) =
B(z)z−1

A(z) [B(z) + q0∆] +B(z)F (z)z−1
(40)

Tcominc
(z) =

B(z)z−1

B(z) [∆A(z) + F (z)z−1] + ∆A(z)q0
(41)

According to Skogestad and Postlethwaite (2007), the
value of Ssen(z) can be achieved as (42) for positional and
incremental GMVC;

Ssen(z) = 1− Tcom(z) (42)

The maximum values of the amplitude ratio of Ssen(z)
and Tcom(z) for all frequencies, respectively, MS and
MT (known as resonant peak), provides useful robustness
measures and also shows a control system design criterion.
These functions can be described by (43) and (44).

MS
∆
= max [Ssen(z)] (43)

MT
∆
= max [Tcom(z)] (44)

According to Skogestad and Postlethwaite (2007), with
MS and MT is possible to achieve GM and PM , as (45)
and (46), respectively. This mathematical relation is valid
for all implemented controllers of the paper.

GM ≥ max

[
MS

MS − 1
,
MT + 1

MT

]
(45)

PM ≥ max

[
2sin−1

(
1

2MS

)
, 2sin−1

(
1

2MT

)]
(46)

7. RESULTS

7.1 Non-adaptive GMVC tests

In all tests realized, the objective was to achieve the fol-
lowing closed-loop performance specifications: maximum
overshoot less or equal than twenty percent (Mp ≤ 20%)
and a stabilization period less or equal than one second
(ts ≤ 1s). To achieve these specifications, for the non-
adaptive case, the positional GMVC was tuned with q1 =
−100 and q2 = 100, and incremental GMVC was tuned
with q1 = −140 and q2 = 140. The Figures 5 and 6 show
the curves obtained for the positional and incremental
case, respectively:

The Figures 7.a and 7.b show the Ssen(z) and Tcom(z)
curves obtained from the responses to positional and
incremental GMVC, respectively. In these figures it is
possible to verify that at low frequencies, the singular

Figure 5. Upper graph: response (blue) and reference
(black). Bottom graphic: controller 1 (blue) and con-
troller 2 (red)

Figure 6. Upper graph: response (blue) and reference
(black). Bottom graphic: controller 1 (blue) and con-
troller 2 (red)

values of T1(z) (referring to input u1) and T2(z) (referring
to input u2) on the logarithmic scale are null (T1(z) =
T2(z) ≈ 0dB), this means that the controllers achieve the
good reference tracking with null offset error.

On the other hand, at high frequencies, the singular values
of T1(z) and T2(z) become increasingly negative on the
logarithmic scale (T1(z) = T2(z) → −50dB), this ensures
good capability of rejection of sensor noise.

Figures 7.a and 7.b show that at low frequencies, the
singular values of S1(z) and S2(z) on the logarithmic
scale are highly negative, which indicates that the system
has good disturbance rejection. according to Seborg et al.
(2016), it is desirable for the singular values of S(z) to be
null for all frequencies, but this is impossible.

Frequency 𝑟𝑎𝑑/𝑠

a. Positional GMVC Singular
Values.

Frequency 𝑟𝑎𝑑/𝑠

b. Incremental GMVC Singular
Values.

Figure 7. Singular Values



7.2 Self-Tuning GMVC tests

To achieve the same performance specifications in closed-
loop (Mp ≤ 20% and ts ≤ 1s), for the self-tuning case, the
positional GMVC was tuned with q1 = −200 and q2 = 200,
and incremental GMVC was tuned with q1 = −140 and
q2 = 140. The Figures 8 and 9 show the curves obtained
for the positional and incremental case, respectively:

Figure 8. Upper graph: response (blue) and reference
(black). Bottom graphic: controller 1 (blue) and con-
troller 2 (red)

Figure 9. Upper graph: response (blue) and reference
(black). Bottom graphic: controller 1 (blue) and con-
troller 2 (red)

For the self-tuning cases, changes in GM and PM were
verified during the iterations, the Figures 10.a and 10.b
show the variation of the GM and PM for each process
input in relation to time for the self-tuning positional case.

In Figure 10.a it is possible to observe that GM1 (referring
to input u1) remained most of the time around 8dB and
while GM2 (referring to input u2) around 32dB. On the
other hand, in Figure 10.b it is possible to observe that
PM1 remained most of the time around 35◦ and while
PM2 around 59◦.

The Figures 10.c and 10.d represent the GM and PM
histograms, respectively. The x-axis of Figure 10.c repre-
sents the GM and the x-axis of Figure 10.d represents the
PM and the y-axis of Figures 10.c and 10.d represents the
number of occurrences. thus, the histogram of Figure 10.c
shows that the value of GM1 occurred more frequently
around 8dB and GM2 around 32dB, while the histogram
of Figure 10.d shows that the value of PM1 occurred more
frequently around 35◦ and PM2 around 59◦.

a. Variation of the gain margin
with respect to time

b. Variation of the phase margin
with respect to time

c. Gain margin histogram d. Phase margin histogram

Figure 10. Analysis of the variation of gain and phase
margins for the self-tuning positional case.

The statistical analysis of Figure 11 is similar to the
analysis carried out in Figure 10, therefore, observing the
Figures 11.a and 11.c, it is concluded that GM1 stayed
most of the time around 21dB and GM2 around 49dB on
the other hand, observing in Figure 11.b and 11.d, it is
concluded that PM1 stayed most of the time around 53◦

and PM2 around 60◦

a. Variation of the gain margin
with respect to time

b. Variation of the phase margin
with respect to time

c. Gain margin histogram d. Phase margin histogram

Figure 11. Analysis of the variation of gain and phase
margins for the self-tuning incremental case.

Due to the variation of GM and PM during the iterations
of the tests realized for the self-tuning case, ten Monte
Carlo tests were performed to verify if these variations
would follow some pattern, as shown in Figures 12 and 13,
although the values of GM and PM vary with each test,
it is possible to calculate expected values for each index.

a. Gain Margin. b. Phase margin.

Figure 12. Monte Carlo test for the positional self-tuning
case



a. Gain Margin. b. Phase margin.

Figure 13. Monte Carlo test for the incremental self-tuning
case

The indexes presented in Table 1 referring to the self-
tuning case were calculated using an average of the ten
Monte Carlo tests.

Table 1. Results of metrics used to evaluate the
controllers

Non-adaptive Self-tuning
Positional Incremental Positional Incremental

ISE 10.9912 10.0136 15.0815 9.5943
ISU 0.85241 1.2975 0.5812 1.4353
σ2
e 10.3069 10.0097 15.0758 9.5837

σ2
u 0.4459 0.38016 0.2180 0.4000

GM1 7.1729 8.6052 8.1944 21
PM1 44.7246 51.7512 34.3500 53.3500
GM2 11.6778 13.2028 21.4500 35.2
PM2 58.4396 60.0009 55.1000 60.35

8. CONCLUSIONS

Through the values presented in Table 1, it is noted that
the ISE became smaller through the incremental action in
the ARIX model in both topologies (self-tuning and non-
adaptive), this means that in terms of reference tracking,
the adaptive case proved to be more efficient. On the other
hand, ISU was higher in the incremental control of both
topologies (self-tuning and non-adaptive), so although the
reference tracking is better for incremental cases, there was
a higher energy consumption for this.

The results table also shows that the variance of the re-
sponse and the control action is smaller in the incremental
action in the ARIX model in the non-adaptive topology.
However, in the self-tuning case, the incremental action re-
sulted in a smaller response variance and a larger variance
in the control action. Therefore, in terms of oscillation in
the response, the incremental adaptive topology proved to
be the best option.

The results table shows that the incremental action applied
in the ARIX model for both topologies (self-tuning and
non-adaptive) ensured higher values of GM1, PM1, GM2
and PM2. Therefore, it is noted that in terms of reference
tracking, response oscillation and robustness, the GMVC
with incremental action in the ARIX model in the self-
tuning topology proved to be more efficient.
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sistemas–Técnicas lineares e não-lineares aplicadas a
sistemas reais. Editora UFMG.
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Åström, K.J. and Wittenmark, B. (2013b). Computer-
controlled systems: theory and design. Courier Corpora-
tion.

Barrera Prieto, F. (2018). Um estudo sobre arquiteturas
de hardware para técnicas de fusão sensorial através do
ekf e da estimação de estados baseada em filtros h́ıbridos
otimizados. Dissertação submetida ao departamento de
engenharia mecânica.Universidade de Braśılia.
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