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Abstract
This paper presents the mathematical formalism, design and evaluation of a minimum order unrestricted horizon predictive
control (UHPC) predictive applied to nonlinear chemical process. The UHPC design method is still quite new and this paper
contributes further by evaluating its application in a nonlinear system and its robustness properties. The control design is done
to ensure stability, robustness, reference tracking and disturbance rejection even in the presence of modeling errors and noise.
The evaluation is conducted through numerical simulations for step references and load disturbances with one single system:
the continuous stirred tank reactor (CSTR). The UHPC problem are assessed under an incremental control scheme and based
on the identified stochastic linear model. The temporal and frequency results of the UHPC are compared to the results of
the generalized predictive control (GPC) using the same output prediction horizon. Both controllers are able to eliminate
the offset, however the UHPC has greater margins of stability and noise attenuation, being able to maintain the same loop
response throughout the control system’s operating range, without degrading the performance of the controller, which is not
the case with GPC.

Keywords Predictive control · Stochastic control · Kalman predictor · Chemical processes · Nonlinear systems · Robustness
analysis

1 Introduction

The research of model-based predictive control (MBPC)
started in the early 1970s, where several methods of pre-
dictive design have been proposed over the years [1]. One of
the first proposals was theminimum variance (MV) regulator
presented by [2]. The control objective was to regulate the
output signal of the system in relation to a constant reference
signal, so that the variance in the output signal, caused by the
presence of noise, was minimal.
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The MV regulator has a relevant role as a precursor in the
development of other model-based predictive control strate-
gies, which today are successfully applied in academia and
industry, such as the generalized minimum variance (GMV)
control presented by [3] and the generalized predictive con-
trol (GPC) method proposed by [4]. Such controllers, GMV
and GPC, can be understood as generalizations of the control
strategy of the MV regulator, where both are based on a very
solid theoretical basis [5].

GPC can be considered the successor to GMV, since the
GMV control plus the dynamic matrix control (DMC) pre-
sented by [6] led [4] to the GPC synthesis. Even though it
is a stochastic MBPC algorithm like GMV, GPC is rarely
applied because of its stochastic properties and the noise
model is commonly simplified, which leads to the use of the
CAR (controlled auto-regressive) model. Not even [7], when
presenting the properties of GPC, considered the usage of
CARMA (controlled auto-regressivemoving average)model
in their examples.

GMV andGPC can be represented via a polynomial struc-
ture with two degrees of freedom and interacting with all
signals involved in a classic control loop. Such a configura-
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tion is known in the literature as canonical RST topology,
where three polynomials in the discrete domain represent fil-
ters that weight the control, output and reference signals in a
control system.

As explained in [8,9], the RST structure facilitates the
understanding and implementation of such control tech-
niques, in addition to havingwide acceptance in the academic
and industrial environment, also allowing the analysis of per-
formance and robustness via methods established within the
analysis of control systems and theory, such as frequency
domain analysis using the Bode diagram and Nyquist dia-
gram. That said, the controller proposed in this work has its
control law implemented in a polynomial way, according to
the results to be presented in the next sections.

In the original research by [3], the GMV control law is
obtained by minimizing a cost function associated with the
concept of generalized systems. The objective is to add in
the controller design some parameters that allow to satisfy
the characteristics desired by the designer, giving the control
loop greater flexibility. The generalized system is defined by
the designer and varies according to the parameters to be
included in the controller’s equation, with the system model
to be adopted and with the structure of the cost function to
be minimized.

In turn, the GPC presented by [4] is from the extended
horizon controller family and generally uses an incremental
model of the system to obtain the control signal, calculated
by minimizing a cost function similar to the GMV. If the
GMV is the simplest and least complexmember of theMBPC
family, the GPC is the most popular member, being used
in numerous segments, encompassing systems of the most
different complexities [10].

In terms of mathematical representation of models via
polynomial ratio for the synthesis of the GMV and GPC con-
trol laws, the literature addresses positional or incremental
model for different model structures of the system to be con-
trolled. Generally deterministic models are preferable over
stochastic ones, since such a choice facilitates and reduces
the design time of predictive controllers, although it is known
that such a choice impacts the performance and robustness
of the control loop [4,11–13].

Since the consolidation of the predictive control theory,
the interest of academia and industry in MBPC controllers
has remained high throughout the decades, since applica-
tions in several areas present promising results (numerical
and experimental), which leverages the study of such control
techniques. The strong interest of the scientific and industrial
community in predictive control is linked to the ability of
these controllers to adequately deal with the various classes
of systems found in the real world, for example: stable, unsta-
ble, minimum phase, non-minimum phase, linear, nonlinear,
integrators, combinations of the above, among others [5,10].

The two representatives of theMBPC family that stand out
the most are the GMV and GPC, which are still the object
of study for countless researchers in the most varied areas
of industrial application, such as: power systems, renewable
sources, chemistry, petrochemicals, automobiles, robotics,
aerospace, food, telecommunications, air conditioning, civil
engineering, among others. That said, the Unrestricted Hori-
zon Predictive Control (UHPC) is a strong candidate to be
considered and implemented in such industries in the future
where GMV and GPC have wide penetration, since UHPC
shares design similarities with both [12,14].

ThefinalUHPCalgorithm is the result of constant research
to obtain an extended horizon predictive controller based on
a stochastic model. Such an approach was avoided, since for
both the GMV and GPC algorithm this means an increase in
design complexity when the horizon of prediction is exten-
sive or a stochastic model is used instead of a deterministic
model, since for both cases it is necessary to solve Dio-
phantine equations. This barrier in the design stage leads
many works to use the simplest versions of such controllers,
referred to in the literature as GMV and GPC of minimum
order, thus limiting the advantages obtained by extending
the prediction horizon and by the stochastic approach of the
system [14,15].

However, the results presented in [16] raised the interest
in further investigation on the extension of the prediction
horizon beyond the compensation of time delay in the GMV.
In this work, the authors present an entirely new approach
to the design of the GMV via the state space, (GMVSS—
generalized minimum variance in the state space). The main
contribution of the work is the simplicity of design due to the
absence of the Diophantine equation in the procedure. The
Diophantine equation is solved indirectly and naturally by the
problem formulation itself, using the Kalman filter obtained
from a stochastic representation in state space. This proce-
dure differs from the original, GMV, via transfer functions,
however it provides the same results. Other important works
on GMV control via state space are presented in [17,18].

TheGMVSS designmethod is used to overcome the ques-
tion of solving the Diophantine equation, without increasing
the design complexity of the GMV. Based on this premise,
[19] presents the first attempt to extend the horizon of pre-
diction beyond the mere compensation of time delay as is
done in GMV. Such an algorithm was named as long-range
minimum variance (LMV), where the control law obtained is
based on a stochastic model. The work investigated how the
extension of the prediction horizon affects both the output of
the controller and the output of the plant in two classes of
systems. The numerical and experimental results presented
show that for the same prediction horizon, in terms of control
effort, the LMV control is more economical when compared
to the classic GPC of [4]. Another advantage of LMV is
that it does not use a receding horizon like GPC and other
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MBPC algorithms, which reduces the computational burden
and complexity of implementing its control law.

However, the observed results did not confirm the expec-
tations regarding the unrestricted extension of the prediction
horizon which would guarantee a good result in terms of
minimizing damping and variance. On the contrary, by
overextending the prediction horizon, as was done in the
work, led the control loop to show quite oscillatory behavior
[19].

[19] suggested that the problem would be in the synthesis
of the controller, since that was a preliminary work and was
still under study by the group of researchers. The suspicion
was confirmed, the LMV algorithm has a gap, which would
be the control prediction horizon. As the LMV is based on
GMV and this in turn has only the prediction of the system’s
output signal, the LMV control inherited this characteristic
in its synthesis. The UHPC algorithm is born when the con-
trol prediction horizon is included in the controller project,
similar to the GPC, filling the gap identified in the LMV
synthesis.

In [14] the UHPC based on the GMVSS design method
is presented, which has the advantage of the absence of the
explicit solution of the Diophantine equation compared to
other approaches of the MV type and, for this reason, the
prediction horizon can be extended indefinitely, to the unlike
other controllers called long-range predictors, where the pre-
diction horizon is usually less than or equal to ten samples.
Unlike DMC, GPC and other members of the MBPC fam-
ily, the UHPC does not use a receding horizon to calculate
future control signals. Instead, the twoDiophantine equations
present in the UHPC synthesis are solved intrinsically using
the Kalman filter to obtain the future command signal. In
addition to this ease of design, theUHPC is based on stochas-
tic models, being another important difference compared to
more common predictive approaches, since considering the
noisemodel that disturbs the system improves the controller’s
regulation capacity.

The numerical simulations carried out showed that the
noise rejection capacity of the UHPC is similar to the MV
regulator, but reducing control effort, where the obvious
cause for such result is the UHPC extended prediction hori-
zon, which in practice means that the controller “knows” the
behavior of future noise in advance, so the controller is able
to act in the present in order to reduce the control effort.
For example, in the UHPC case the variance of the output
variable was 0.2% greater than in the MV case, however the
necessary control effort had a 45% smaller variance for the
UHPC case in relation to the MV [14].

It is important to note that all numerical simulations
reported in [14] were performed with the minimum order
UHPC andwith a zero weighting factor, whichmeans that all
the energy needed to regulate the system output according to
the desired reference can be used by the controller and, even

with such tuning, the results demonstrated that the control
effort required by the UHPC may be feasible to implement
in experimental cases.

From the pioneering results, it is evident the need for
detailed research with other classes of systems (unstable,
non-minimum phase, non-linear) in addition to those already
studied, equipped with adequate metrics for the analysis of
performance and robustness of the UHPC in its version of
minimum order and in its weighted (not minimum) version,
in order to investigate how the UHPC tuning impacts the ref-
erence tracking and disturbance rejection of the control loop,
comparing its results with those of traditional and predictive
controllers already consolidated in its theory and applica-
tions.

Another inviting aspects to explore inUHPC are themath-
ematical and structural ways in which the controller presents
itself, similar to GMV and GPC, being possible to take
advantage of classic methods of analysis of performance and
robustness existing in the control literature. In this way, it is
possible to propose, justify and validate alternative UHPC
design methodologies based on these evaluation criteria. In
summary, theUHPCcontroller appears as a promising option
to be explored in the MBPC family.

Based on the previous assumptions, a problem that made
(and makes) sense is the investigation of the possibilities
offered by the UHPC, so little explored or even unknown
by the scientific community, regarding improvements in the
minimum variance problem with a synthesis which revolu-
tionizes both performance and design method, surpassing
predecessor designs. Table 1 presents some publications, in
the last years, using MBPC to deal with offset-free behav-
ior (reference tracking and disturbance rejection) in different
areas.

The purpose of this paper is to evaluate in detail the control
loop for different tunings of the UHPC applied to the CSTR
(continuous stirred tank reactor) chemical process not only to
eliminate the steady-state error but also to stabilize nonlinear
monovariable systems (to provide an effective closed-loop
dynamic). Also comparing aspects of performance, stabil-
ity and robustness with the classic GPC for handling offset.
Particularly, the offset-free tracking is the major goal in the
control of industrial processes, where the offset is a result of
a variety of causes such as constant reference changes and
load disturbances. The choice of this process was motivated,
as significant benchmark model, by the fact that it is char-
acterized by a nonlinear behavior, which makes the UHPC
design challenging, since the UHPC is still little explored in
applications in the control literature, in particular nonlinear
systems.

This paper is organized as follows: Sect. 2 presents the
mathematical formalism of the UHPC design. Section 3
presents UHPC design using the state space theory. Section 4
discusses some important concepts of the performance and
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Table 1 Publications using
MBPC

Area Application

Power systems Predictive control of a fresnel collector field [20]

Process control Predictive control of a zinc hydrometallurgy plant [21]

Robotics Predictive control of a two-wheeled mobile robot [22]

Aerospace Predictive control of an unmanned aerial vehicle [23]

HVAC systems Predictive control of ventilation in an air conditioning system [24]

robustness indices found in the control literature. Numerical
results for two benchmark chemical processes are presented
in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Unrestricted horizon predictive control

Consider a CARMA linear model of a single-input single-
output (SISO) system characterized by the following posi-
tional discrete equation [2,25]:

A(q−1)y(k) = q−d B(q−1)u(k) + C(q−1)ξ(k) (1)

where y(k) is the system output, u(k) is the control signal,
d is the time delay, ξ(k) is a Gaussian disturbance sequence
and q−1 is the backward shift operator such that q−n y(k) =
y(k − n), respectively. The roots of the polynomials A(q−1)

and B(q−1) are the open-loop poles and zeros of the system.
Similarly to the GMV of [3], the UHPC of [14] regards a
generalized predicted output Ny steps ahead (with Ny ≥ d),
which is given by

φ̂(k + Ny) = P(q−1)ŷ(k + Ny)

+ T (q−1)yr (k + d) − Q(q−1)u(k) (2)

and is posed into a stochastic optimization problem. The
generalized output proposed by [3] comes directly from the
developments in optimal control and since then, minimizing
the tracking error and the control effort is common sense in
optimal servo control. To simplify the analysis, the gener-
alized predicted output φ̂(k + Ny) in Eq. (2) is reset to its
minimum form, the minimum order UHPC controller has
P(q−1) = T (q−1) = 1 and Q(q−1) = λ. The UHPC con-
trol law is obtained by minimizing the cost function given
by

ϒ = �
[
φ2 (

k + Ny
)] = φ̂2 (

k + Ny
)

(3)

where yr (k) is the nonzero reference signal (setpoint), λ is
the control weighting factor, Ny is the output prediction hori-
zon and� [·] denotes the mathematical expectation operator,
respectively. The relative importance of controller perfor-
mance criteria varies with the application area. For example,

in process control it is generally found that energetic con-
trol signals are undesirable, a slowly responding loop being
preferred, and plant models are poorly specified in terms of
dead-time and order as well as their transfer function param-
eters. Emphasis is therefore placed on robust and consistent
performance despite variations in quantities such as dead-
time and despite sustained load disturbances [11].

Shifting Eq. (1) Ny steps ahead leads to

A(q−1)y(k + Ny) = B(q−1)u(k + Ny − d)

+ C(q−1)ξ(k + Ny) (4)

Clearly ξ(k + Ny) is unknown, and therefore it can be
represented with present and future parts:

C(q−1)

A(q−1)
ξ(k + Ny) = F(q−1)

A(q−1)
ξ(k) + E(q−1)ξ(k + Ny)

(5)

whereas its diophantine noise equation is given by

C(q−1) = A(q−1)E(q−1) + q−Ny F(q−1) (6)

where ne = Ny − 1 and n f = na − 1; with na , ne and
n f being the order of the polynomials A(q−1), E(q−1) and
F(q−1), respectively.

In contrast to GMV of [3], since Ny ≥ d, the control
signal u(k + Ny − d) from Eq. (4) is also unknown. As well
as for the stochastic part, it can be represented by present and
future parts [14], which does not exist in the GMV control
problem:

B(q−1)

A(q−1)
u(k + Ny − d) = H(q−1)

A(q−1)
u(k)

+ J (q−1)u(k + Ny − d) (7)

whereas its diophantine command equation is given by

B(q−1) = A(q−1)J (q−1) + q−(Ny−d)H(q−1) (8)

where n j = Ny − d − 1 and nh = na − 1; with n j and
nh being the order of the polynomials J (q−1) and H(q−1),
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respectively.Using only the known data, the predicted output
ŷ
(
k + Ny | k) is

ŷ
(
k + Ny | k) = H(q−1)

A(q−1)
u (k) + F(q−1)

A(q−1)
ξ (k) (9)

and so the current stochastic signal ξ(k), calculated from the
estimation error, is given by

ξ(k) = y (k) − q−Ny ŷ
(
k + Ny | k)

E(q−1)
− q−d J (q−1)

E(q−1)
u (k)

(10)

Substituting Eq. (10) into Eq. (9) and after some algebric
manipulations, the Ny steps ahead minimum variance pre-
dictor (MVP) turns to

ŷ
(
k+Ny | k) = E(q−1)H(q−1)−q−d F(q−1)J (q−1)

C(q−1)
u(k)

+ F(q−1)

C(q−1)
y(k) (11)

The roots of polynomial C(q−1) must be within the unit
circle for the MVP to be stable. The minimum order UHPC
control law is obtained through the minimization of Eq. (3),
resulting in

u (k) = C(q−1)yr (k + d) − F(q−1)y (k)

λC(q−1) + E(q−1)H(q−1) − q−d F(q−1)J (q−1)

(12)

By now, some interesting points are worth to mention:

• The extended horizon Ny is embedded into H(q−1);
• If Ny = d, UHPC turns to the minimum order GMV
presented in [3];

• if Ny = d and λ = 0, UHPC turns to the MV regulator
presented in [2];

• If the plant does not have a natural integrator, its insertion,
in order to ensure zero error in steady-state for step inputs,
is obtained through the incremental action, u(k) = u(k−
1) + �u(k), � = 1 − q−1, turning the model in Eq. (1)
into a CARIMA (controlled auto-regressive integrated
moving-average) model, given by

�A(q−1)y(k) = q−d B(q−1)�u(k) + C(q−1)ξ(k)
(13)

Thus, the control law in Eq. (12) becomes

�u (k) = C(q−1)yr (k + d) − F(q−1)y (k)

λC(q−1) + E(q−1)H(q−1) − q−d F(q−1)J (q−1)

(14)

and the degree of F(q−1) and H(q−1) changes to na ;
• The use of weighting filters for y(k), yr (k), and u(k)

or �u(k) in Eq. (2) instead of using only the weighting
factor λ is feasible and easy to implement. However, for
the sake of simplicity, this approach will not be exploited
in the present work.

The term ‘unrestricted horizon’ refers to the limitation
existing in the GMV control where the prediction horizon Ny

only compensated for the time delay d, that is, Ny ≤ d. This
limitation is eliminated in theUHPCcontrol, as the prediction
horizon can take Ny ≥ d values. The big issue in predicting
a long ahead horizon is clearly the solution of Eqs. (6) and
(8), since the control problem increases due to ne = Ny − 1
and n j = Ny − d − 1. This was one of the reasons why [3]
once suggested to keep d ≤ 3, consequently moving away
from the possibility of dealing with high frequency sampling
dependent systems, since the sampling period needed to be
large in order to keep d as small as possible. In the next
section, the GMVSS method is presented for dealing with
this issue [16].

3 UHPC in the state space

The mathematical formulation presented in this section dif-
fers slightly from [16] due to the consideration of an extended
prediction horizon Ny . The formulation presented in [16] dif-
fers from the one derived in [3] only in the design procedure,
i.e., the control law and closed-loop results are the same.

A CARMA state space linear model is used, where the
system in Eq. (1) is rewritten as

x (k) = Ax (k − 1) + Bu (k − d) + �ξ (k − 1) (15)

y (k) = Cx (k) + ξ (k) (16)

Therefore, shifting Eq. (15) Ny steps ahead, the output
equation becomes

y
(
k + Ny

) = CANy x (k) +
Ny∑
i=d

CANy−iBu (k − d + i)

+
d−1∑
i=1

CANy−iBu (k − d + i)

+ ξ
(
k + Ny

) +
Ny∑
i=1

CANy−i�ξ (k − 1 + i)

(17)

As in the previous section, the stochastic and control signal
parts can be divided into present and future ones
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ξ
(
k + Ny

) +
Ny∑
i=1

CANy−i�ξ (k − 1 + i) = CANy−1�ξ (k)︸ ︷︷ ︸
present

+ ξ
(
k + Ny

) +
Ny∑
i=2

CANy−i�ξ (k − 1 + i)

︸ ︷︷ ︸
future

Ny∑
i=d

CANy−iBu (k − d + i) = CANy−dBu (k)︸ ︷︷ ︸
present

+
Ny∑

i=d+1

CANy−iBu (k − d + i)

︸ ︷︷ ︸
future

Neglecting the future parts and using Eq. (16), the MVP
is given by

ŷ
(
k + Ny | k) =

(
CANy − CFC

)
x̄ (k) + CHu (k)

+
d−1∑
i=1

CANy−iBu (k − d + i) + CFy (k)

(18)

where F = ANy−1�, H = ANy−dB and x̄ (k) is the Kalman
Filter estimated state vector of the CARMA system in (15)
and (16), given by

x̄ (k) = (A − �C) x̄ (k − 1) + Bu (k − d) + �y (k − 1)

which is equivalent to the one step aheadMVP of [26] and its
use is necessary in the practical sense due to the lack of mea-
sured information from the states. It is interesting to notice
thatFT = [

f0 f1 · · · fna−1
]
andHT = [

h0 h1 · · · hna−1
]
,

intrinsically provide the solution to F(q−1) and H(q−1)

from the diophantine Eq. (6) and Eq. (8), respectively [14].
Using the future portion relating to ξ(k) and comparing it

with Eq. (5), it is possible to explain E(q−1) by moving Eq.
(5) Ny steps back. Therefore, the calculation of the E(q−1)

polynomial is given by

E
(
q−1

)
= 1 + CA0�q−1 + CA1�q−2

+ · · · + CANy−2�q−(Ny−1) (19)

From that same observation, using the future portion
related to u(k) and comparing it with Eq. (7), it is possi-
ble to obtain the filter J (q−1) by moving Eq. (7) Ny − d
steps back. The calculation of J (q−1) is given by

J
(
q−1

)
= CA0B + CA1Bq−1 + CA2Bq−2

+ · · · + CANy−d−1Bq−(Ny−d−1) (20)

Therefore, from the minimization of Eq. (3), now using
Eq. (18), the minimum order UHPC control law becomes

u (k) = yr (k + d) − (
CANy − CFC

)
x̄ (k) − CFy (k)

λ + CH +
d−1∑
i=1

CANy−iBq−(d−i)

(21)

In [14] it was proposed the equivalence between polyno-
mial and state space methods to design the UHPC controller.
Therefore, the control law equations (12) and (21) and the
MVP ones in (11) and (18) are supposedly to be equivalent
as well. In this work the GMVSS method is used to find the
E(q−1), F(q−1), J (q−1) and H(q−1) polynomials neces-
sary to implement the UHPC control law in the canonical
RST controller form presented in Eq. (12). In summary, the
design of the UHPC controller is performed via state space to
solve the two necessary Diophantine equations, speeding up
the design stage, while the synthesized control law is applied
via the transfer function. Furthermore, according to [23] such
decision avoids the increase in the computational load asso-
ciated with the implementation of the control law in the state
space form.

Finally, it is important to note that using the designmethod
presented, the problem of solving the Diophantine equations
of noise and command no longer exists, making it possible
to implement highly-extended prediction horizons without
overloading the memory of the digital controller; UHPC’s
ability to deal with noise is inherited from the Kalman filter
[14].

4 Performance and robustness analysis

The block diagram in theRST formof a closed-loop system is
shown inFig. 1,where the reference, output and control filters
can be observed. This structure adds interesting properties to
the controller to guarantee, for instance, offset-free behavior.
This control representation can provide consistency to the
theoretical aspects in terms of the transfer function, allowing
the control loop to be assessed through classical methods
established in the process control literature for robustness
analysis, stability and performance [27].

A large number of control laws can be written in a generic
way, known as the (canonical) RST form of controller, given
by

R
(
q−1

)
u (k) = T

(
q−1

)
yr (k) − S

(
q−1

)
y (k) (22)
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SystemController

u(k)ry (k) y(k)

od kid k

1T(q )

1S(q )

1

1
R(q )

d 1

1

q B(q )
A(q )

Fig. 1 Block diagram of the RST digital controller canonical form

where R(q−1), S(q−1) and T (q−1) are weighting polynomi-
als (filters) of the control signal, system output and reference
signal, respectively. The controller RST format has two
degrees of freedom, since the control law consists of a feed-
back portion S

(
q−1

)/
R

(
q−1

)
and a feedforward portion

T
(
q−1

)/
R

(
q−1

)
. The proper selection of these polynomials

allows to solve both the regulation problem and the reference
tracking problem in a control loop [28,29].

According to [27,28] there are two ways to consider the
RST control structure: positional RST and incremental RST.
The positional RST structure is represented by Eq. (22) and
does not guarantee reference tracking and disturbance rejec-
tion for systems without integrators, while the incremental
RST does. The incremental RST structure is given by

R
(
q−1

)
�u (k) = T

(
q−1

)
yr (k) − S

(
q−1

)
y (k) (23)

Now, in Fig. 1, considering the disturbances di (k) and
do(k) zero, the closed-loop transfer function is

Tcl
(
q−1

)
= y (k)

yr (k)
= q−d B

(
q−1

)
T

(
q−1

)

A
(
q−1

)
R

(
q−1

) + B
(
q−1

)
S

(
q−1

)
(24)

Considering yr (k) and do(k) zero, the closed-loop transfer
function of the input disturbance di (k) to the output of the
plant y(k) is

Si
(
q−1

)
= y (k)

di (k)
= q−d B

(
q−1

)
R

(
q−1

)

A
(
q−1

)
R

(
q−1

) + B
(
q−1

)
S

(
q−1

)
(25)

Considering yr (k) and di (k) zero, the closed-loop transfer
function of the output disturbance do(k) to the output of the
plant y(k) is

So
(
q−1

)
= y (k)

do (k)
= A

(
q−1

)
R

(
q−1

)

A
(
q−1

)
R

(
q−1

) + B
(
q−1

)
S

(
q−1

)
(26)

The UHPC controller is a linear controller and can be
written in the canonical RST form. Upon inspection of Eqs.

(12) and Eq. (14), it is easy to see that for the case of the
minimum order UHPC, positional or incremental, the poly-
nomials R(q−1), S(q−1) and T (q−1) are defined as

R
(
q−1

)
= H

(
q−1

)
E

(
q−1

)
+ λC

(
q−1

)

− q−d F
(
q−1

)
J

(
q−1

)

S
(
q−1

)
= F

(
q−1

)

T
(
q−1

)
= C

(
q−1

)

where the parameter λ penalizes the control action. Under
steady-state conditions the UHPC controller in the RST form
attenuates the offset related to a measurable disturbance in a
constant form and also provides time-delay compensation.

4.1 Sensitivity functions

According to [30], the robustness of a control system is ana-
lyzed from the gain margin (GM) and phase margin (PM)
of the complementary sensitivity function and the sensitiv-
ity function, Eqs. (24) and (26), respectively. The sensitivity
functions allow access to the closed-loop frequency response
characteristics and how sensitive the control system is to
changes in the plant, providing relevant information regard-
ing the stability and robustness of the control system. The
maximum amplitude ratios of the sensitivity and comple-
mentary sensitivity functions provide useful measures on the
robustness of the control loop. These measures are also used
as a design criterion for control systems [31].

Let
∥∥So

(
e− jωTs

)∥∥ and
∥∥Tcl

(
e− jωTs

)∥∥ denote the ampli-
tude ratios of So(q−1) and Tcl(q−1), respectively. MS is
defined as the maximum value of

∥∥So
(
e− jωTs

)∥∥ for all fre-
quencies:

MS = max
0≤ω≤∞

∥∥∥So
(
e− jωTs

)∥∥∥ =
∥∥∥So

(
q−1

)∥∥∥∞ (27)

Using Eq. (26), the sensitivity function in Eq. (27), the
amplitude ratio becomes

MS = max
0≤ω≤∞

∥∥∥So
(
e− jωTs

)∥∥∥

=
∥∥∥∥∥

A
(
q−1

)
R

(
q−1

)

A
(
q−1

)
R

(
q−1

) + B
(
q−1

)
S

(
q−1

)
∥∥∥∥∥∞

(28)

The maximum value MS also has a geometrical interpre-
tation. The loop gain is defined as the transfer function of the
controller in series with the transfer function of the plant.
Then MS is the inverse of the shortest distance from the
Nyquist plot for loop gain to the critical point (−1, j0).
Thus, as MS decreases, the closed-loop system becomes
more robust [30,32].
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Likewise MS value, MT is defined as the maximum value
of

∥∥Tcl
(
e− jωTs

)∥∥ for all frequencies:

MT = max
0≤ω≤∞

∥∥∥Tcl
(
e− jωTs

)∥∥∥ =
∥∥∥Tcl

(
q−1

)∥∥∥∞ (29)

Using Eq. (24), the complementary sensitivity function in
Eq. (29), the amplitude ratio becomes

MT = max
0≤ω≤∞

∥∥∥Tcl
(
e− jωTs

)∥∥∥

=
∥∥∥∥∥

q−d B
(
q−1

)
T

(
q−1

)

A
(
q−1

)
R

(
q−1

) + B
(
q−1

)
S

(
q−1

)
∥∥∥∥∥∞

(30)

In a SISO sense, for achieving the desired reference track-
ing and disturbance rejection to the control system, at low
frequencies, MT → 1 and MS → 0 and at high frequen-
cies MT → 0 and MS → 1. Ideally,

∥∥Tcl
(
e− jωTs

)∥∥ should
be kept equal to the unit for the highest possible frequency
range, while

∥∥So
(
e− jωTs

)∥∥ should be null for all frequen-
cies. However, this ideal situation is physically impossible
for control systems, so a more realistic objective is to mini-
mize

∥∥So
(
e− jωTs

)∥∥ by the largest possible frequency range.
For a satisfactory control system 1 ≤ MT ≤ 1.5 and
1.2 ≤ MS ≤ 2 [30].

According to [33] the maximum MS and MT values are
related to the gain and phase margins as shown:

GM ≥ 20log10

(
MS

MS − 1

)
, PM ≥ 2sin−1

(
1

2MS

) (
180◦

π

)

(31)

GM ≥ 20log10

(
1 + 1

MT

)
, PM ≥ 2sin−1

(
1

2MT

) (
180◦

π

)

(32)

The GM is the amount that the loop gain can be increased
before reaching the stability limit, while the PM is the
amount of phase lag required to reach the stability limit
[34,35].

It is worth noting that such specifications may vary
between different fields of application, i.e., in the field of the
chemical and petrochemical industry a well-tuned controller
must provide 4.6 dB ≤ GM ≤ 12 dB and 30◦ ≤ PM ≤ 45◦
[30]. In turn, the control systems designedwithin the aviation
area have more demanding specifications, commonly in the
range 6 dB ≤ GM ≤ 15 dB and 30◦ ≤ PM ≤ 60◦ [35].
Finally, control systems with high GM and PM values sup-
port greater parametric changes in the plant, before reaching
closed-loop instability [36].

Since UHPC is a optimal linear quadratic control tech-
nique, theUHPCcontrol law typically provides PM approxi-
mately equal to 60◦ and an asymptotic reference tracking, i.e.,
no overshoot or greatly reduced overshoot from a physically

realizable control signal, where λ is the design parameter
that can be used to set the settling time of the control sys-
tem, which perfectly copes with the system model energy
constraints, that is, the optimization is subject to the sys-
tem model. In [37,38] sub-optimal solutions are presented
in order to attend specific design criteria and constraints for
both performance and robustness of the control loop using
Laguerre functions and Mandani fuzzy systems.

In classical control theory, robustness specifications can
be built into the control loop from the beginning of the
controller design, providing enough gain and phase mar-
gin to neutralize the effects of system modeling errors and
external disturbances that may act on he. Unmodeled high-
frequency dynamics as well as parametric plant variations
(low-frequency disturbances) can act to destabilize a control
loop.

Therefore, it is important to design controllers that have
robust stability, which is the ability to provide stability to
the control loop despite modeling errors due to unmodeled
high-frequency dynamics and plant parametric variations. In
addition, it is necessary that the designed controllers have
robust performance, which is the ability to guarantee satis-
factory performance (in terms of overshoot, settling time,
steady state error, etc.) even if the system may be subject to
disturbances [35].

4.2 Performance indexes

Performance indexes are widely used in the control literature
as a quantitative measure of the quality of the controlled sys-
tem, especially in terms of reference tracking and disturbance
rejection. Such indexes assist the designer in his decision on
which control technique to use or which tuning should be
selected for the control system [34,39].

Four performance indices were chosen, the first two are:
integral squared error (ISE) and integral absolute error (IAE)
calculated by

I SE =
n∑

k=1

e(k)2 (33)

I AE =
n∑

k=1

‖e (k)‖ (34)

where e(k) = yr (k) − y(k). The other two indices
are: integral squared of control (ISU), used to evalu-
ate the control effort of each controller and is calculated
from the control signal u(k); total variation of control
(TVC), used to compute the rate of change of the control
action, based on the control increment �u(k), calculated
by
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ISU =
n∑

k=1

u(k)2 (35)

TVC =
n∑

k=1

‖�u (k)‖ (36)

where�u(k) = u(k)−u(k−1). This section discussed some
important concepts concerning the performance and robust-
ness from control engineering. Performance and robustness
indexes are the indices used in this paper as quantitative mea-
sures of the closed-loop stability [30].

Therefore, it is important to design controllers that have
robust stability, which is the ability to provide stability to the
control loop, despite modeling errors due to non-modeled
high-frequency dynamics and parametric variations of the
plant. In addition, it is necessary that the designed controllers
have robust performance,which is the ability to guarantee sat-
isfactory performance (overshoot, settling time, steady-state
error, etc.) even if the system may be subject to disturbances
[35].

Therefore, it is important to design controllers that have
robust stability, which is the ability to provide stability to the
control loop, despite modeling errors due to non-modeled
high-frequency dynamics and parametric variations of the
plant. In addition, it is necessary that the designed controllers
have robust performance,which is the ability to guarantee sat-
isfactory performance (overshoot, settling time, steady-state
error, etc.) even if the system may be subject to disturbances
[35].

5 Simulation results

The case study presented in this paper is the application of the
UHPC to control a well-known chemical plant. The CSTR
process is an irreversible exothermic first order reaction, that
exhibits nonlinear behavior with stable and unstable oper-
ating points. In this way, the ability of the UHPC to deal
with stable and unstable dynamics can be investigated. The
dynamic response varies with the operating point and has
already been a case study in [40] for GPC control and in
[13] for GMV control. Consider a normalized dimensionless
discrete model obtained from [41] as

x1 (k) = x1 (k − 1) − Tsx1 (k − 1)

+ Ts Da (1 − x1 (k − 1)) exp

(
x2 (k − 1)

1 + x2 (k − 1)
/
φa

)

x2 (k) = x2 (k − 1) − Tsx2 (k − 1) (1 + βa) + Tsβau (k)

+ Ts BaDa (1 − x1 (k − 1)) exp

(
x2 (k − 1)

1 + x2 (k − 1)
/
φa

)
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Fig. 2 Static characteristic of the CSTR

y (k) = x2 (k) (37)

where x1(k) represents the dimensionless reactant concen-
tration and x2(k) the reactor temperature. The control input,
u(k), is the dimensionless cooling jacket temperature. The
CSTR model parameters are Da = 0.072, φa = 20, Ba = 8
and βa = 0.3, meaning Damköhler number, dimensionless
activation energy, heat of reaction coefficient and heat trans-
fer coefficient, respectively.

The system in Eq. (37) exhibits numerous forms of behav-
ior depending on the values of the physical parameters and
the regions of operation. Figure 2 shows the static curve of
the CSTR from the parameters given above and the major
challenge is to control the system around unstable operating
points, in this case, the middle temperature values.

The extended recursive least squares estimator was used
to identify a second-order CARMA model. The choice of a
second-order model is due to a fair comparison with previ-
ous works [13,40], where second-order models showed an
adequate capture of the dynamic characteristic of the CSTR
system, in addition to being a reduced-order model and thus
implies a controller also of order reduced, as the UHPC is
model-based. Considering the open-loop response and the
characteristic curve of the CSTR system shown in n Fig. 2,
the linear model was defined without time delay, so d = 1.
A set of 1400 input and output data referring to the operating
points presented in Fig. 3 was used for the estimation step
and another set of 1400 data in the validation step referring
to close but not equal operating points, to those of Fig. 3. The
multiple correlation index R2 is used to assess the quality of
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Fig. 3 Reference tracking and load disturbance rejection using GPC
and UHPC

mathematical models [42] and is given by

R2 = 1 −

N∑
k=1

[
y (k) − ŷ (k)

]2

N∑
k=1

[y (k) − ȳ]2
(38)

where y(k) is the measured output, ŷ (k) is the model output,
and ȳ is the average of the N samples. The closer the value
of R2 is to 1, it indicates a higher quality of the evaluated
model. The value of R2 between 0.8 and 1 can be considered
adequate and sufficient for many practical applications in
system identification [42]. From the validation data an R2 =
0.9886 was calculated for the identified model, so the model
was considered quite adequate to represent the dynamics of
theCSTR system. The linearmodel is only used to synthesize
theUHPCcontrol law thatwill be implemented via numerical
simulation, the control signal u(k) presented in Eq. (12) is
applied to the nonlinear CSTR process described in Eq. (37).

Therefore, the polinomial model used for the synthesis
of the controllers, for the system in Eq. (37), considering a
sampling period Ts = 0.3 s, is given by

A
(
q−1

)
= 1 − 1.8419q−1 + 0.8422q−2

B
(
q−1

)
= 0.0900 − 0.0888q−1

C
(
q−1

)
= 1 − 0.0681q−1 − 0.0401q−2

The state space representation matrices of the nominal
model for the system in Eq. (37) are:

A =
[

1.8419 1
−0.8422 0

]
B =

[
0.0900

−0.0888

]

C =
[
1 0

]
� =

[
1.7738

−0.8823

]

The difference lies in the C(q−1) polynomial, since for
classical GPC models of the system are usually used, i.e.,
C(q−1) = 1, not because it is difficult to model, but because
it is difficult to handle within the GPC design for higher
values of Ny, Nu . Another advantage of the UHPC is its ease
of including high-orderC(q−1) by the designer, if necessary.
To include the incremental action on both controllers, the
CARMAmodel was augmented by�, becoming a CARIMA
model, given by

�A
(
q−1

)
= 1 − 2.8419q−1 + 2.6841q−2 − 0.8422q−3

B
(
q−1

)
= 0.0900 − 0.0888q−1

C
(
q−1

)
= 1 − 0.0681q−1 − 0.0401q−2

The state space representation matrices of the augmented
model for the system in Eq. (37) are:

Aa =
⎡
⎣

2.8419 1 0
−2.6841 0 1
0.8422 0 0

⎤
⎦ Ba =

⎡
⎣

0.0900
−0.0888

0

⎤
⎦

Ca = [
1 0 0

]
�a =

⎡
⎣

2.7738
−2.7242
0.8422

⎤
⎦

The numerical simulations in this work used the same output
prediction horizon Ny and the weighting factor λ is used to
fine tuning the GPC andUHPC response, in order to promote
a fair comparison between the controllers. For GPC, it is
assumed that the control horizon is the same as the output
horizon (Nu = Ny).

Figures 3 and 4 show the output and control signals of the
system using the classic GPC and UHPC controllers for dif-
ferent tunings. This case study uses reference changes around
the operating range and step load disturbance do(k) as shown
in Fig. 1 (20% of the setpoint magnitude), applied at time
instant 244 s. It is an interesting challenge to know if the pro-
posedUHPC is able to control the systemwhere the dynamics
vary in different operating conditions. Both controllers are
able to eliminate the load disturbance applied at the system
output, as GPC and UHPC have incremental action �u(k).

Considering Figs. 2 and 3, it is noticed that small varia-
tions in the magnitude of the control signal u(k) imply high
variations in the magnitude of the output signal y(k) within
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Fig. 4 Reference tracking and load disturbance rejection using GPC
and UHPC

the operating range of 2–5, since in this region the nonlin-
ear characteristic of the CSTR system is exacerbate. Such
behavior is expected, as theUHPC andGPC control lawwere
designed based on a linear model of the system considering a
larger operating range, so the performance of both controllers
is degraded for this particular operating range and even so,
both the controllers are able to maintain the stability of the
system thanks to their high robustness margins indicated by
the GM and PM .

Also in Fig. 3, it can be observed that the GPC and UHPC
controllers are able to stabilize the control loop and track the
reference in all operating points even in the presence of load
disturbances, however the UHPC has a more adequate per-
formance. In Fig. 4, although the GPC and UHPC controllers
present a similar reference tracking and there are no output
oscillations as seen in Fig. 3 due to a tuning considering a
larger Ny and λ, the GPC is unable to stabilize the control
loop when the load disturbance is applied. In addition, the
UHPC control effort is lower than the GPC.

Figure 5 shows the reference tracking when the system
output is contaminated by a zero mean Guassian noise with
variance σ 2

ξ = 0.005. Both controllers were able to stabilize
the control loop, however the GPC is more sensitive to noise
and, in turn, the UHPC presents optimal noise attenuation.
Table 2 shows the variances of the control increment, con-
trol signal, output signal and generalized output, σ 2

�u , σ 2
u ,

σ 2
y and σ 2

φ , respectively, as well as the performance indexes
calculated from the temporal response shown in Fig. 5.
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Fig. 5 Reference tracking and noise attenuation using GPC and UHPC

Table 2 Indexes and variances calculated for the CSTR system

Controller GPC UHPC

ISE 2.5386 × 102 1.8721 × 102

IAE 2.4513 × 102 2.0734 × 102

ISU 1.6141 × 103 6.4999 × 102

TVC 1.6224 × 103 1.0158 × 103

σ 2
�u 2.1741 × 100 8.2690 × 10−1

σ 2
u 1.1301 × 100 4.5500 × 10−1

σ 2
y 1.9952 × 100 1.9696 × 100

σ 2
φ 1.0399 × 102 3.9386 × 101

In Fig. 6, the frequency analysis of the sensitivity func-
tions, Tcl(q−1) and So(q−1), from the numerical simulation
presented in Fig. 5 reveals slight differences in high fre-
quency for the complementary sensitivity function,where the
GPC controller offers greater bandwidth compared toUHPC.
Observing the sensitivity function, it is noticed that for low
frequencies theGPCcontroller offers greater rejection (atten-
uation) to load disturbances. Furthermore, the maximum
value MS is lower for the GPC (MS = 0.6928) in rela-
tion to the UHPC (MS = 0.7417). The MS value is of
paramount importance for the control loop in order to mit-
igate high frequency disturbances, sensor noise and to be
robust to unmodeled high frequency dynamics.

Table 3 shows themaximumMS andMT values calculated
for the controllers in each control system simulated in Figs.
3, 4 and 5. It is observed that the values of MS decrease
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Fig. 6 Frequency response using GPC and UHPC

Table 3 Maximum values calculated for the CSTR system

Control MT MS

GPC (Ny = 6 and λ = 4) 1.0364 0.8039

UHPC (Ny = 6 and λ = 4) 1.0295 0.7928

GPC (Ny = 18 and λ = 10) 1.0000 0.6667

UHPC (Ny = 18 and λ = 10) 1.0055 0.7192

GPC (Ny = 12 and λ = 7) 1.0073 0.6928

UHPC (Ny = 12 and λ = 7) 1.0236 0.7417

as λ increases. The higher its value, the more conservative
the control action becomes and, moreover, high values of λ

increase the variance of y(k) and decrease the variance of
u(k), while small values of λ produce the inverse effect.

In Fig. 7 the closed-loop response for different λ values is
presented, it can be seen that for λ = 25, the system output
oscillates around the reference, having difficulties to stabi-
lize the system for such operating points. The closed-loop
response for different values of Ny is shown in Fig. 8, it is
observed that only for Ny = 15, the system output is able
to adequately track the reference at all operating points of
the system. In turn, the other values selected for Ny fail to
provide reference tracking at the all three operating points of
the CSTR system. It is worth remembering that the last two
operating points belong to the intermediate range where the
nonlinearity of the system is stronger, making the work of
the UHPC more difficult.

Now regarding the computational load for implementing
each control law in the RST form (see Fig. 1), the specifica-
tions of the computer used in simulations are: Intel® Core™
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Fig. 7 Reference tracking using UHPC with fixed Ny and different λ

values across three operating points

0 50 100 150 200

time (s)

0

2

4

6

am
pl

itu
de

CSTR closed-loop response

y
r

y
Ny = 5

y
Ny = 10

y
Ny = 15

0 50 100 150 200

time (s)

-2

-1

0

1

2

am
pl

itu
de

UHPC control action for  = 15

Ny = 5
Ny = 10
Ny = 15

Fig. 8 Reference tracking using UHPC with fixed λ and different Ny
values across three operating points

i5-8250U CPU 1.60 GHz; 8.00 GB RAMmemory installed;
64bit Windows 10 Home Single Language Operating Sys-
tem (Version 21H1). The software used was MATLAB®

2019b. Table 4 shows the number of parameters (number
of controller coefficients in RST form) and the runtime in
seconds of 1 (one) iteration of the GMV, GPC and UHPC
predictive controllers, in addition to the classic and widely
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Table 4 Computational load for each control law

Control Law Runtime Parameters

UHPC 6.30 × 10−6 s 27

GPC 5.10 × 10−6 s 24

GMV 6.20 × 10−6 s 10

PID 4.10 × 10−6 s 8

disseminated, in industry and in the academic community,
PID (Proportional Integral Derivative) control for the numer-
ical simulation presented in Fig. 4. From Table 4, it can also
be concluded that although the UHPC has more than triple
the coefficients in its RST controller structure than the PID,
this is not an obstacle for its implementation, since the run-
time of the the control law of both remains extremely fast
and the processing capacity of controllers or any electronic
device keeps growing over the last few decades. Only the
UHPC and GPC controllers were able to stabilize the control
system and promote proper reference tracking at all CSTR
operating points, which did not happen for the GMV and
PID controllers, therefore, such controllers are not suitable
candidates for the case study addressed in this work. It is
worth remembering that the proposed UHPC has 2 tuning
parameters (Ny and λ), while the GPC (Ny , Nu and λ) and
PID (Kp, Ki and Kd ) have 3 tuning parameters.

The tuning for GMV is Ny = d = 1 and for UHPC it is
Ny = 15. Both controllers have the same control weighting
factor λ = 15. From Fig. 9, it is clear that the GMV con-
trol is unable to stabilize the system for all operating points
considered, as well as the PID control, which was unable to
maintain system stability at any operating point.

Figure 10 shows the behavior of the control system when
theCSTRprocess undergoes parametric variations in Da ,φa ,
Ba and βa . At the instant of time t = 244 s, the 4 parameters
present in Eq. (37) change to Da = 0.0648, φa = 30, Ba =
6 and βa = 0.5. Both controllers can stabilize the system
even in the presence of such variations, however the GPC
control presents sustained oscillations and a higher energy
cost. Therefore, once again, the UHPC control proves to be
more robust to variations in system parameters for the same
prediction horizon.

Figure 11 shows the control system when it is started with
non-zero initial conditions for x1 = x2 = 2. It can be seen
that the output quickly tracks the reference without any com-
plications. Once again, it can be seen that the UHPC is able
to provide greater damping with less control effort than the
GPC for the same prediction horizon.
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Fig. 9 Reference tracking using UHPC and GMV with fixed λ value
across five operating points
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Fig. 10 Reference tracking using UHPC and GPC in the presence of
parametric variations

6 Conclusions

In this paper, the minimum order UHPC design applied to
a CSTR nonlinear system found in the chemical area was
presented. The numerical results of the UHPC are compared
to the classic GPC and GMV with regard to the stability,
performance and robustness of the control loop. GMV and
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Fig. 11 Reference tracking using UHPC and GPC for non-zero initial
conditions

GPC are a members of the predictive controller family, well
known in academia and industry.

There are two main differences between these two control
methods: the UHPC is based on the CARMA model and the
GPC is usually based on the CAR model, which improves
the UHPC’s ability to regulate the system output even in the
presence of modeling errors, external disturbances and noise
measurement; the UHPC control law has approximately the
same computational cost to implement in relation to the GPC
control law, however, UHPC is capable of providing smaller
variances in the signals of interest to the control systemwhen
compared to GPC.

The case study was evaluated in a CSTR system. It has a
nonlinear behavior with stable and unstable operating points
and different static gains depending on the operating point.
The goal was to show that the UHPC controller is efficient
to handle steady-state error even on different system dynam-
ics and load disturbance applied to the system output. The
UHPChas amore uniform response compared to theGPC for
the system’s operating range, which indicates greater robust-
ness despite the dynamic changes. The temporal responses
and the calculated performance indexes confirmed that the
UHPC was able to provide greater stability margins than the
GPC. Another important characteristic of UHPC in relation
toGPCwas the ability to reduce all variances of interestwhen
the system’s output was contaminatedwith noise. TheUHPC
control signal was less sensitive to noise than the GPC. It was
also observed a greater robustness of the UHPC in maintain-

ing the stability of the CSTR process even in the presence of
parametric variations when compared to the GPC.

Finally, the UHPC was more suitable than the GPC to
control the studied CSTR system, where it is concluded that
it is an excellent candidate to be applied in system classes
where others predictive controllers present satisfactory per-
formance or in systems with complex dynamics.
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